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Abstract

We discuss models of updating that depart from Bayes’ rule even when

it is well-defined. After reviewing Bayes’ rule and its foundations, we

begin our analysis with models of non-Bayesian behavior arising from

a bias, a pull towards suboptimal behavior due to a heuristic or a mis-

take. Next, we explore deviations caused by individuals questioning the

prior probabilities they initially used. We then consider non-Bayesian

behavior resulting from the optimal response to constraints on percep-

tion, cognition, or memory, as well as models based on motivated beliefs

or distance minimization. Finally, we briefly discuss models of updating

after zero probability events.
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1. Introduction

The rule on how to update beliefs upon the receipt of new information introduced in the

18th century by Thomas Bayes is one of the fundamental normative benchmarks of decision-

making. It prescribes a method to update beliefs that adheres to the principles of probability

theory and is the unique rule that guarantees several normative properties, like dynamic

consistency. This normative appeal is coupled with a positive one: Bayes’ rule provides a

very useful framework for understanding a broad set of behaviors and, in several instances,

even a reasonable approximation of the actual evolution of beliefs. Bayes’ rule is at the

core of any treatment of information in many disciplines, including economics—from game

theory to rational expectations in macroeconomics.

Despite its appeal, the updating procedure suggested by Bayes has several known lim-

itations. Particularly relevant for a model of decision-making, robust evidence shows that

humans consistently and substantially depart from its prescriptions. To account for these

deviations, many alternative updating rules have been developed in several disciplines.

The goal of this article is to review the most prominent alternatives to Bayesian updat-

ing, with a specific focus on those most relevant to economics. We cover several different

kinds of departures from the normative benchmark, from biases to to cognitive limitations.

While some deviations can be naturally classified as mistakes, for others it will be less

clear. We also briefly mention models that extend Bayes’ rule to capture the reaction to

zero probability events.

Before embarking on our discussion, we must clarify our scope. We will cover merely

a slice of the colossal literature on belief updating in economics, psychology, neuroscience,

philosophy, mathematics, and statistics. We focus exclusively on models of updating, with
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only indirect references to empirical evidence; in economics, we refer to Benjamin (2019)

for a recent review. We concentrate solely on theories in which i) individuals possess a well-

defined belief before and after receiving information, and follow subjective expected utility

when necessary; ii) there exists a unique and precise way to interpret the new information,

which can be formalized as an event in the appropriately defined state space; and iii)

beliefs are not incorrect or misspecified. Only at the end, we very briefly mention models

that extend Bayes’ rule to capture reactions to zero probability events. Therefore, we do

not discuss updating when subjects do not have unique priors or posteriors, such as with

ambiguity aversion,1 or when beliefs are not formed, as in reinforcement learning; with

more general types of information, such as vague, ambiguous, or imprecise information or

information of the form “Event A is more likely than event B;”2 or with misspecified beliefs,

such as with overconfidence or overly simple models.3 We only briefly mention the broader

implications of non-Bayesian learning.4 Even within our restricted focus, we emphasize

models that have been particularly influential in economics or have the potential to become

so. Due to space limitations, instead of delving deeply into a few models, we cover more but

be more brief, aiming to convey core insights while leaving details to the original papers.

These pages are organized as follows. In Section 2, we introduce the framework and

review Bayes’ rule, highlighting some of the reasons for its appeal. Moving on to models

of non-Bayesian behavior, Section 3 examines models that attribute such behavior to a

bias. In Section 4, we explore deviations from Bayes’ rule due to individuals questioning

their priors. Section 5 delves into models that link non-Bayesian behavior to limitations

in memory, perception, or generic cognitive noise, while in Section 6, we discuss models

that connect it to utility derived from beliefs or updating based on minimizing a distance.

Section 7 briefly reviews models that extend Bayes’ rule to capture reactions to information

to which the prior assigned probability zero. We conclude in Section 8 with a discussion on

the state of the literature.

2. Framework and Bayes’ Rule

Consider a non-empty set Ω of states of the world with σ-algebra Σ, a probability measure

π—what we refer to as our “prior”—and an event A ∈ Σ—our “information.” Denote by

∆(Ω) the set of probability distributions. We are interested in updating rules: rules that

prescribe how to update π if we are given the information that the true state of the world

lies inside a given event A. Formally, an updating rule maps each prior and event to an

updated belief, that is, maps from ∆(Ω) × Σ to ∆(Ω). Denote by πA this updated belief,

often called the “posterior.”

1Updating under ambiguity is particularly interesting, as it presents a case where non-Bayesian
behavior may be natural; see Gilboa & Marinacci (2013) for a review.

2These cases have been extensively studied in several disciplines and include classical approaches
such as Jeffrey’s rule or AGM belief revisions (Alchourrón et al. 1985, Diaconis & Zabell 1986). For
recent contributions in economics, see Dominiak et al. (2021), Zhao (2022).

3Learning with misspecified beliefs is a classical problem in many disciplines, and recently has
received particular attention in economic theory; Section 5 includes a brief discussion. We do include
approaches in which individuals act as if Bayesian with the wrong model (what Rabin 2013 calls
quasi-Bayesian) when that can be seen as a way to represent the agent’s mistake in updating (e.g.,
Rabin 2002’s Law of Small Numbers; see Section 3.1.4).

4A few papers explore implications in areas such as social learning (DeGroot 1974, Molavi et al.
2018) or persuasion and information design (Galperti 2019, de Clippel & Zhang 2022).
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Several papers in economics and psychology adopt a special case of this setup with a

set of payoff relevant states S, a set of possible messages M , a prior probability p over S,

and a conditional probability of M given S; we are interested in the updated beliefs over S

given message m ∈ M , which we denote pm. This setup may appear different because the

message m is not a subset of the state space S, but we only need to define the state space

correctly: Letting Ω = S ×M and appropriately constructing Σ and π on Ω, it is easy to

see that this is a special case in which the underlying state space has a product structure,

and we are interested only in updating after a specific subset of possible events and only

in the beliefs on a specific dimension of the state space. Because the general framework is

common in formal treatments and this special case in some modeling, we consider both.

2.1. Bayes’ rule

The universal benchmark for updating rules is Bayes’ rule,5 according to which

πA(B) =
π(A ∩B)

π(A)
=: πBU

A (B)

for all B ∈ Σ and for all A such that π(A) ̸= 0. Since π(A ∩ B) = π(A|B)π(B), this is

equivalent to

πA(B) =
π(A|B)π(B)

π(A)
.

This formula follows directly from the definition of conditional probabilities: If we

require πA(B) to coincide with π(B|A), we immediately obtain π(A∩B)
π(A)

. This constitutes a

strong argument for its role as a normative benchmark: Insofar as updating coincides with

conditional probabilities, it must be Bayesian.

Bayes’ rule is also intuitive. Suppose we are told the state lies in A; what are the chances

that it also belongs to B? If A ∩ B = ∅, they should be zero—as Bayes’ rule prescribes.

What if A∩B ̸= ∅? Then, to compute the likelihood of B, only the states in A∩B remain

relevant; hence, a good starting point for πA(B) is π(A ∩ B). But this cannot be the final

answer: For πA to be a probability measure, we must have πA(Ω) = 1; thus, we need to

normalize the probabilities. Since π(A ∩ Ω) = π(A), dividing everything by π(A) gives the

correct normalization. We obtain πA(B) = π(A∩B)
π(A)

, that is, Bayes’ rule.

Another distinguishing feature of Bayes’ rule is that updated probabilities maintain the

correct relative likelihoods. Take B,C ∈ Σ and suppose B,C ⊂ A. Before information,

their relative likelihood is π(B)
π(C)

. Because B,C ⊂ A, the relative likelihood should not

change with the information that the true state is in A. Indeed, under Bayes’ rule, πA(B)
πA(C)

=
π(A∩B)

π(A)
π(A∩C)

π(A)

= π(A∩B)
π(A∩C)

= π(B)
π(C)

, as sought. If B and C are not subsets of A, we want relative

likelihoods to maintain a ratio that is equal to the measures remaining after we take the

intersection with A—again, precisely what Bayes’ rule prescribes.

5Typically ascribed to the English revered Thomas Bayes (1701-1761), the updating rule did not
appear until after his death, in 1763, in an article edited by Richard Price (1723-1791), who may
have contributed. The same rule is believed to have been discovered independently by Pierre-Simon,
Marquis de Laplace (1749-1827), and published in 1774 (McGrayne 2011). Interestingly, Laplace is
also known to be the first to document gamblers’ fallacy, noting that if early in a month more boys
are born, people expect more girls to be born in the rest of the month.
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Despite these advantages, one core limitation of Bayes’ rule is already apparent: Up-

dating is not defined after zero probability events. Indeed, the rule requires π(A) > 0.

This is unavoidable: The rule aims to preserve relative likelihoods of all subsets of A, but

when π(A) = 0, all such likelihoods are “flattened” to zero; there is no relative ranking to

preserve. Put another way, the prior π does not include any information on the relative

likelihood of subsets of all events of probability zero—and therefore, it cannot offer guid-

ance on how to construct a posterior. The only way to construct such a posterior is to

invoke directions not contained in the original prior, departing from a fundamental tenant

of Bayes’ rule.

2.2. On its appeal

We now briefly review some additional well-known reasons for Bayes’ rule appeal.6

2.2.1. It derives from the rules of probability theory. We have seen that if individuals

update beliefs following conditional probabilities, they must follow Bayes’ rule. This is

probably the main reason why many scholars consider Bayesian updating a manifestation

of rationality and any deviation from it as evidence of mistakes/biases/limitations.

However, there is an important caveat to this argument. In some instances, the initial

belief π is objectively given to the decision-maker: For example, in many lab experiments,

subjects are told the correct prior probability distribution. In these cases, indeed, insofar

as decision-makers trust this objective prior and the way probabilities work, they should

follow Bayes’ rule. But this normative argument becomes significantly weaker when the

prior probability is subjective, that is, when individuals are not given a prior belief but need

to form one themselves. For example, people may have a prior belief about the behavior

of the stock market, but this is quite different from an objectively correct belief; it is

subjectively assessed and likely to be wrong, and individuals know it. In these cases, one

may argue that reasonable individuals may well deviate from Bayes’ rule. For example,

an individual who receives information that was very unlikely given her chosen prior—e.g.,

an unexpected financial crisis—may decide, quite reasonably, that they may have used the

wrong prior in the first place; because the prior was subjectively chosen, this seems like

something they are entitled to do without being considered “irrational.” But this may

lead them to a (subjective) posterior that is not the Bayesian update of the (subjective)

prior; this is the approach taken by the models in Section 4. In general, when beliefs are

subjective, it is not obvious that non-Bayesian behavior should be classified as a mistake;

alas, in the vast majority of decision problems outside the laboratory, subjective beliefs are

all that we have. While this point is known, it is also typically ignored, and the normative

appeal of Bayes’ rule is rarely questioned. We find that surprising. For a related discussion

in economics, see Epstein (2006).

2.2.2. Behavioral Foundations and Dynamic Consistency. Next, we discuss the behavioral

foundations of Bayes’ rule. Under expected utility, preferences are directly related to beliefs,

and we study how preferences change as we change information. We will show that there

6This is but a brief review. See also Williams (1980) for a relation to the Principle of Minimal
Information, Jaynes (2003) for a textbook that discusses the relation to logic, or Perea (2009) for a
relation to dynamic consistency in games.
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is a tight relationship between the Dynamic Consistency of preferences and the Bayesian

updating of beliefs.7

Assume that Ω is finite and consider a set of prizesX, e.g., monetary amounts. Following

the literature, we call an act any map from Ω to X, that is, a map connecting a prize to each

state; denote by F the set of all acts. Clearly, preferences over acts are related to beliefs over

states, and we want to study how preferences over acts change with information. To this

end, fix an event A and consider two preference relations on F : ≽ denotes the preferences

before information, and ≽A denotes the preferences after the agent has been told that the

true state lies in A.8 Assume that both ≽ and ≽A admit expected utility representations

with utility u over X and beliefs π and πA, respectively, and that π(A), πA(A) ̸= 0.9

We are now ready to introduce our two key behavioral postulates. Consider two acts,

f and g, and suppose that f(ω) = g(ω) for all ω ∈ A: Inside A, f and g are the same.

Suppose we tell the individual that the state lies in A. Then, the individual should be

indifferent between f and g. This is Consequentialism.10

Axiom 1 (Consequentialism). For any f, g ∈ F , if f(ω) = g(ω) for all ω ∈ A, then f ∼A g.

To introduce our next postulate, we need an extra bit of notation: For any f, g ∈ F ,

denote fAg the act that is equal to f(ω) if ω ∈ A and g(ω) otherwise. Suppose fAg ⪰ g.

Because fAg and g differ only within A, fAg ⪰ g indicates that our agent prefers what

f returns to what g returns within A—what they return outside is the same and “cancels

out.” But then, it stands to reason that if we tell the agent that the true state lies in A,

the agent should prefer f to g, that is, f ≽A g. The converse should also hold true: If f

is preferred to g knowing that A is true, fAg should be preferred to g before information.

This gives us our final postulate.

Axiom 2 (Dynamic Consistency). If π(A) > 0, for any f, g ∈ F , fAg ⪰ g ⇔ f ≽A g.

This postulate imposes a form of consistency in preferences with information: After

receiving information A, preferences cannot change for those acts that differed only inside

A. Indeed, this is exactly the notion of dynamic consistency. These two postulates give us

Bayesian updating (for the proof, see Ghirardato 2002).

Theorem 1. ≽ and ≽A satisfy Consequentialism and Dynamic Consistency if and only if

πA = πBU
A .

The behavioral foundations for Bayes’ rule are Consequentialism—akin to the agent

believing the information—and Dynamic Consistency—akin to preferences not changing

for acts that are identical outside the information. Theorem 1 shows that not only does

Bayes’ rule satisfy these normatively appealing postulates: It is the only updating rule that

does so. Any other updating rule must violate at least one of these postulates.

7This discussion follows Ghirardato (2002), but simplifies the analysis; see that paper and to the
many references therein for a more complete treatment and for proofs.

8A preference relation R on a set Y is a binary relation on Y (R ⊆ Y × Y ) that is complete (for
all x, y ∈ Y , either xRy or yRx or both) and transitive (for all x, y, z ∈ Y , xRy and yRz imply
xRz). As usual, we adopt ∼ and ≻ to denote the symmetric and anti-symmetric parts.

9A preference relation R on F admits an expected utility representation if there exist u : X → R
and π ∈ ∆(Ω) s.t. for all f, g ∈ F , fRg if and only if

∑
ω∈Ω π(ω)u(f(ω)) ≥

∑
ω∈Ω π(ω)u(g(ω)).

See Kreps (1988) for a textbook treatment that includes foundations.
10This requirement may appear almost obvious, almost a test of whether the individual believes

the information. Yet, several models discussed in the next sections will violate it.
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2.2.3. The Bayesian paradigm in cognitive sciences and the Bayesian Brain. While a vast

literature documents systematic deviation from Bayes’ rule in updating tasks, a separate

and growing literature in cognitive psychology and neuroscience has instead argued that the

human mind is close to being “Bayes optimal” in a wide range of environments, like percep-

tion, motor control, memory, language, and several cognitive tasks (Ernst & Banks 2002,

Körding & Wolpert 2004, Tenenbaum et al. 2006, Griffiths & Tenenbaum 2006, Oaksford &

Chater 2007, Doya 2007, Griffiths et al. 2008). While choices are, of course, frequently not

accurate, this literature suggests that the mind does properly account for the variability

and noise in the information it receives and forms “Bayesian optimal” behavior accounting

for such noise; this leads some authors to argue that behavior may be more rational than

previously thought (Oaksford & Chater 2007, Preface). In general, the Bayesian approach

has proved to be a useful and effective way of capturing how the mind constructs complex,

abstract, and broadly correct models of reality using only the noisy data from perception,

providing both convenient functional forms and empirical fit. This has led to the formu-

lation of what some call the Bayesian Brain hypothesis, according to which the brain is

an “inference machine” (Friston 2009, p. 294) that uses a generative model of the world to

infer causes of sensations and make predictions (Knill & Pouget 2004, Doya 2007, Friston

2012, Sanborn & Chater 2016, Kording 2014). Some authors have connected this to the

principles of free energy (Friston & Stephan 2007, Friston 2009).

There is, of course, no contradiction between non-Bayesian behavior in updating exper-

iments and Bayes optimality in, say, vision. We have learned the latter with experience,

without being given, and consciously thinking of, priors, noise of information, etc.; these

aspects may be encoded (or not, see below) by our brain, but we do not consciously think

of probabilities and noise. In updating experiments, instead, subjects receive information

about the environment in the form of probabilities exogenously given—not experienced—

and are asked to perform tasks like reporting a probability that requires them to obtain a

probability representation. These are very different processes.

The Bayesian approach to cognitive sciences is not uncontroversial. First of all, there

is a fundamental issue of tractability, given how quickly the dimensions of the probability

space grow, particularly in high-level cognitive tasks (Sanborn et al. 2010, Tenenbaum et al.

2011, Jones & Love 2011, Bowers & Davis 2012); it is unclear how the brain implements

or approximates computationally intractable updating (Kwisthout et al. 2011). Moreover,

even within the framework, the issue remains open as to whether the brain does indeed

encode a generative model, likelihood functions, and probabilities (the Bayesian Coding

hypothesis) or whether this is an “as if” representation—because Bayesian responses are

optimal, by construction any process that delivers optimality or near optimality can be

represented as if it were Bayesian. The brain may also be able to perform Bayesian-like

calculations without actually representing distributions; for example, some authors have

suggested the “brain is a Bayesian sampler” (Sanborn & Chater 2016, p. 883). In general,

there is also a distinction between the claim that behavior in perception or motor tasks

is Bayesian and the claim that high-level reasoning is Bayesian, for which, thus far, the

evidence is less substantial. It should also be emphasized that the Bayesian modeling of

high-level cognitive tasks has many degrees of freedom in the choice of where noise is, the

priors, the nature of signals, etc.; therefore, empirical fit alone may be insufficient.

This approach is becoming increasingly influential in economics (Woodford 2020). In

Section 5.1, we discuss recent attempts to argue that non-Bayesian behavior may actually

have a Bayesian rationale considering the noise in the system.
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3. Biases in Updating

We are now ready to begin our discussion of alternatives to Bayes’ rule, and we start with

the traditional approach, which ascribes deviations from normative benchmarks to a “bias”:

a pull towards sub-optimal behavior due to heuristics or mistakes.

3.1. Biases in how Bayes’ rule is applied

The most immediate way to model biases in updating is to posit that posteriors are com-

puted using a modified updating rule. A very useful functional form is the so-called Grether

rule (Grether 1980, 1992), introduced to interpret experimental data but later adopted as

a model of behavior. Following the literature, for the rest of this section, we focus on the

special case of payoff-relevant states in S and messages in M , both finite (see Section 2).

According to the Grether rule, for each s ∈ S and m ∈ M

pm(s) =
p(s)αp(m|s)β∑

s′∈S p(s′)αp(m|s′)β

for some α, β > 0.11 Clearly, α = β = 1 returns Bayes’ rule. The parameter α controls

the weight on the prior, or, more precisely, how the posterior depends on how much the

prior differentiates among elements of S;12 instead, the parameter β controls the weight on

the new evidence. As we will see, several conflicting combinations of parameters have been

suggested in the literature: α < 1 (base-rate neglect), α > 1 (in some cases, confirmation

bias), β > 1 (overreaction), β < 1 (underreaction). As pointed out by Benjamin (2019), we

can have α and β both smaller (or larger) than 1: The values of both α and β matter.

3.1.1. Conservatism. One of the most classical deviations from Bayesian behavior is in-

troduced in Edwards (1968), Phillips & Edwards (1966), and Phillips et al. (1966) and

corresponds to the case α = 1 and β < 1. Individuals correctly weigh the relative odds

given by the prior but underweight new evidence. A classical interpretation ascribes it to

difficulty in aggregating different sources (Slovic & Lichtenstein 1971).

Several papers in macroeconomics and finance derive the implications of a different

model in which the updated belief is a convex combination of the prior and the Bayesian

posterior (Mankiw & Reis 2002, Coibion & Gorodnichenko 2012, Bouchaud et al. 2019).

Kovach (2021) shows that this updating behavior is axiomatized by a property called Dy-

namic conservatism. One implication is that if investors observe current cash flows that are

informative about future ones, conservatism can generate the profitability anomaly, where

past profits forecast future returns (Bouchaud et al. 2019). Intuitively, because investors are

conservative in updating, their beliefs do not fully incorporate that high cash flows today

imply high cash flows in the future, so they are likely to be positively surprised.

3.1.2. Confirmation bias. Another classic deviation is the tendency of individuals to over-

draw from information that reinforces the current prior and not from evidence that weakens

11Virtually all the literature assumes S is binary and defines the Grether rule using likelihood
ratios. Here, we consider the general case of finite S and extend the rule appropriately (but we
cannot use likelihood ratios). The extension above guarantees that pm is a probability measure.

12Indeed, α becomes irrelevant when the prior is uniform: if p(s) = 1
|S| for all s ∈ S, then

pm(s) =
p(s)αp(m|s)β∑

s′∈S p(s′)αp(m|s′)β =
1

|S|
α
p(m|s)β∑

s′∈S
1

|S|
α
p(m|s′)β

=
p(m|s)β∑

s′∈S p(m|s′)β .
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it, a broad umbrella of behavior that usually goes under the name confirmation bias.13 Al-

though the distinction is at times less clear, confirmation bias is different from conservatism

because it implies that some evidence is interpreted incorrectly, which means that new in-

formation may be detrimental to learning and lead beliefs further astray.

A classical explanation in psychology is that individuals evaluate the consistency of

the information with the hypothesis at hand but do not account for the consistency with

other hypotheses (Fischhoff & Beyth-Marom 1983). Confirmation bias can be modeled

using the Grether rule if β is made to depend on whether the evidence is confirmatory

or not; Charness & Dave (2017) use one specification and Benjamin (2019, p. 155–156)

discusses others. The most well-known model in economics is the simple and tractable

formalization introduced in Rabin & Schrag (1999). Consider a binary payoff-relevant state

and binary space of informative messages, and assume that individuals correctly apply

Bayes’ rule when messages confirm their current belief, that is, when the message supports

the state they currently consider more likely. If, however, they receive a message against

their current belief, with probability q, they “misperceive” this message as if it were the

opposite, supportive message. Note that q is assumed to be fixed and independent of

prior strength; moreover, individuals are severely biased in that they perceive the opposite,

supporting evidence, as opposed to simply ignoring disconfirming messages.

With q = 1, only the first message matters—after it, beliefs will slowly converge to the

state it pointed to. In general, q > 0 leads, on average, to overconfidence: Intuitively, beliefs

will be more extreme than that of a Bayesian because individuals receive (on average) more

supporting messages. Learning is affected even in the long run. As the number of messages

grows to infinity, if messages are not too informative and q is high enough, there is a positive

probability that the decision-maker may hold (and reinforce) the belief in the wrong state.

To see why, suppose that the decision-maker has received a first message pointing towards

the wrong state; if messages are sufficiently noisy and q is high, they are more likely to

perceive messages that confirm this wrong state than messages that disagree with it, so

they may become gradually convinced of the wrong state. Pouget et al. (2017) examines

the consequences of this model on financial markets, connecting them to several empirical

patterns.

Other models explain confirmatory bias as a desire for consistency. Yariv (2005) con-

siders a model with binary states and three periods in which individuals must choose an

action after observing one of two informative messages. However, their utility is affected

not only by the value of the action but also by the consistency of beliefs: they receive a

utility boost if their prior convictions become stronger, as they like to think that they have

made the right choice in previous periods. Depending on the agent’s sophistication—their

awareness of their own biases—the model can generate under- and overconfidence, excess

stickiness or volatility in choice, and even a preference to avoid information.

Confirmation bias is likely to be particularly relevant when some of the messages are

ambiguous—instead of pointing to specific states, they are open to interpretation. Fryer

et al. (2019) studies a model with binary state space in which individuals receive either a

message supporting one of the states or an ambiguous message. Individuals interpret the

latter using their current belief and treat it as if it were the message that is more likely

13This broad term is connected to belief polarization and other findings. While several papers
pointed out how the initial evidence of polarization can be compatible with Bayes’ rule, other
evidence seems impossible to fit within the Bayesian framework. See Benjamin (2019, p. 156).
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given their belief. When ambiguous messages are sufficiently frequent, there is a positive

probability that two agents that observe the same messages but start with different priors

converge to being sure of opposite states, and a positive probability that both converge

to the same wrong conclusion. The intuition is similar to that of Rabin & Schrag (1999):

If enough messages are distorted by the prior, this will overcome the informativeness of

undistorted messages and the prior directs the final outcome.

Finally, a form of confirmation bias may operate not only during information processing

but also during information seeking : Individuals may seek information that confirms their

beliefs or that confirms their previous choice. This may happen because subjects have

a tendency to seek information where they believe their optimal choice will be, but they

recall only their previous choice, not their previous belief. Together, these tendencies lead

agents to seek information that confirms their previous choice. Kaanders et al. (2022) and

Sepulveda et al. (2020) present evidence as well as basic models.

3.1.3. Base-rate neglect. Motivated by experimental evidence that beliefs do not vary

enough with prior information (Kahneman & Tversky 1973), other papers study individuals

who underweight the prior—the base-rate—while correctly incorporating new signals.

Benjamin et al. (2019) introduce a model that corresponds to the Grether rule with α ∈
[0, 1) and β = 1. Here, predictions become sensitive to how the state space is constructed.

Consider two scenarios. In the first, S = {“Car A is bigger”, “Car B is bigger”}, each with

probability .5. In the second, “Car A is bigger” is divided into two states, “Car A is bigger

and Red” and “Car A is bigger and Blue,” each with probability .25. Consider messages

that inform us of the size of the car and not the color. Under Bayes’ rule, the belief that

“Car B is bigger” is the same in the two scenarios. This is no longer the case in the model

of Benjamin et al. (2019): “Car B is bigger” is less likely in the second scenario because the

individual underweights the fact that this state has higher prior probability.

In a dynamic setting with a sequence of messages over time, more recent messages are

given more weight: past messages enter the prior of the following round and are under-

weighted, their influence decreasing with each new round. Beliefs fluctuate more than in

the Bayesian benchmark, and individuals may become relatively sure of wrong beliefs after

a few rounds if they receive a stream of coherent evidence. Because they overweight new

evidence, they may also fail to converge to full confidence in one state even with infinite

messages or fail to learn the true state even if their prior assigns positive probability to it.

3.1.4. Representativeness. Kahneman & Tversky (1972) introduce the representativeness

heuristic: the idea that humans report the likelihood of A given B not by computing the

conditional probability of A given B, but by trying to assess the extent to which A is “repre-

sentative” of B, capturing the salient features of B. In principle, this could be a bias on how

probabilities are computed or on how people answer questions about probabilities. Several

papers have shown how this can capture many violations of Bayes’ rule, like the Law of

Small Numbers (LSN)—the belief that small samples should reflect the actual probabilities

(Kahneman & Tversky 1972)—sample-size and base-rate neglects (Kahneman & Tversky

1973), and the conjunction fallacy—the belief that the intersection (conjunction) of two

events is more likely than one of them by itself (Kahneman & Tversky 1983).

While the intuitive notion of representativeness may explain several biases, it needs to be

precisely defined for the model to have real predictive ability. Kahneman & Tversky (1973)

discuss several characteristics that judgments of representativeness should have but leave
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an exact definition open (see also Kahneman & Frederick 2002). Griffin & Tversky (1992)

suggest that judgments of probabilities after observing some evidence are a combination

of the evidence’s strength—how extreme the information is, for example, the fact that a

sample of coin tosses contains only heads—and its weight—how significant the evidence

is, e.g., the size the sample of coin tosses. In their models, individuals give too little

importance to the weight of evidence and too much to the strength, which representativeness

affects. Individuals should then be overconfident when strength is high but weight is low—

they over-infer from unreliable evidence that is very representative—and underconfident

in the opposite case. However, this model only partially contributes to defining what

representativeness actually means in general. Other papers have suggested using likelihood

or similarity, but both have several limitations (see Tenenbaum et al. 2001 for a discussion).

Finally, Tenenbaum et al. (2001) define the representativeness of data d given a hypothesis

h as the logarithm of the likelihood ratio P (d|h)
P (d|hc)

, where hc is the negation of the hypothesis

h. Intuitively, data is representative of a hypothesis the higher the ratio that this data is

generated under that hypothesis than under the alternative. This captures several intuitive

features of representativeness but relies on the specification of an alternative hypothesis,

which may be seen as either a welcome degree of freedom or a limit on predictive power.

In economics, several papers have tried to formalize the precise meaning of represen-

tativeness. Probably the most comprehensive attempt is the model of local thinking and

diagnostic expectations of Gennaioli & Shleifer (2010) and Bordalo et al. (2016), related

to Tenenbaum et al. (2001), which we discuss in depth in Section 3.3. Zhao (2018) gives

axiomatic foundations of a model where individuals use how “similar” A is to B instead

of how likely A is given B. The paper suggests a specific form for the similarity function,

of which a convenient special case is π(A|B)aπ(B|A)1−a for some a ∈ (0, 1]; individuals

mistakenly also consider π(B|A). The paper shows how this approach captures base-rate

neglect and the conjunction and disjunction fallacies.

Rabin (2002) studies the Law of Small Numbers in a model in which agents face inde-

pendent and identical draws of a sequence of one of two messages a or b, where they are

trying to learn the probability θ of message a, given a finite set of possibilities. Instead of

treating each draw as independent, these agents update as if these draws were made with-

out replacement from an urn of size N containing θN a messages and (1− θ)N b messages.

They act as if draws were correlated, generating the gambler’s fallacy: The second draw is

believed to be negatively correlated with the first.

The paper then explores two economic implications. First, the LSN implies overinference

after a short sequence of messages: Because the LSN implies that agents believe that even

short sequences must reflect the underlying rate, they will exaggerate how informative

each small sample is. Moreover, when agents observe messages from different sources with

different rates, they believe that rates are more heterogeneous than they really are—they

ascribe differences in small samples to large differences in rates.

Rabin & Vayanos (2010) introduce a related model in a more applied setting, in which

individuals receive i.i.d. messages but treat them as if negatively correlated over time, with

more recent realizations having a stronger impact. The paper considers the general case in

which the underlying state can be constant or follow an A-R process and shows how this

model can generate not only the gambler’s fallacy but also, when the state is constant, the

hot-hand fallacy (the mistaken belief that streaks will continue).

Finally, Noor & Payró (2022) proposes an axiomatic model of the Law of Small Numbers

canonical coin-tossing environment. The paper proposes the postulate of Mean Reversion,
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which formalizes the belief that the sample mean will tend to stay close to the bias of the

coin along the entire sequence, and obtain a representation in which beliefs evolve as if the

bias of the coin is path-dependent and self-correcting.

3.2. Biases on how conditional probabilities are computed

Another class of models studies deviations from Bayes’ rule that originate from mistakes

in how conditional probabilities are computed. (Models of representativeness can also be

considered part of this class.) Benjamin et al. (2016) study the Non-Belief in the Law of

Large Numbers (NBLLN), the erroneous belief that the proportion of binary signals may

differ from the population mean even in large samples. Agents observe a clump of size N

of binary signals a or b, generated by a binomial distribution that gives signal a with rate

θ. The agent, however, treats them as if generated in two phases: First, a subjective rate β

is drawn from a full-support distribution fθ, centered at θ; second, the sample is generated

from a binomial with rate β. Given this mistaken belief, the agent applies Bayes’ rule. This

has several implications. First, if N > 1, beliefs about the ratio of a signals are mean-

preserving spreads of the correct ratio. Intuitively, if N grows to infinity, a Bayesian agent

will be sure of seeing exactly θ% a signals, while NBLLN agents believe that the proportion

of a signals comes with density fθ, which is not degenerate. Moreover, when predicting θ,

such agents under-infer from data: even with infinite N , they believe that each θ implies a

full-support distribution instead of a precise percentage; they treat the data as noisier than

it is and believe that noise does not disappear even with infinite data. Because NBLLN

agents under-infer from data, they are less willing to pay for data and may resort to smaller

datasets. NBLLN agents are also less willing to bet on many independent identical gambles

because they fail to appreciate that they entail little risk for the law of large numbers.

3.3. Local thinking and diagnostic expectations

Motivated by representativeness, Gennaioli & Shleifer (2010) and Bordalo et al. (2016)

introduce the local thinking model, which connects the idea of representativeness with fea-

tures of memory retrieval, with an approach very related to Tenenbaum et al. (2001). To

illustrate, consider a doctor who runs a test for a disease carried by 1% of the population.

Patients are either sick (s) or healthy (h), and the test is either positive (+) or negative

(-). The test has few false negatives but many false positives: Only 1% of sick patients

test negative, while 30% of healthy patients test positive. In this case, the chances that a

patient who tests positive carries the disease is low, at 1
31

per Bayes’ rule. Local thinking

suggests that individuals inflate this conditional belief: Because positive tests are more

common among the sick than the healthy, it becomes “representative” of the sick.

3.3.1. Local Thinking. Formally, consider payoff-relevant states S and a message m ∈ M .

To define the model, we also need to specify a comparison group, defined by another possible

message m (which may or not coincide with M\{m}); we discuss possible choices below.

According to local thinking, instead of using the correct p(s|m), individuals use

p̂(s|m) =
1

Z
p(s|m)

(
p(s|m)

p(s|m)

)θ

where θ ≥ 0 is a parameter while Z is a normalization term that guarantees that p̂ is a

probability measure (summing to 1). Intuitively, p(s|m)
p(s|m)

denotes how representative state
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s is of message m, and θ modulates how much this matters: Individuals overestimate the

chances of s given m if s is more common given m than m.

In our example of medical tests, recall that p(s|+) = 1
31

but note that we also have

p(s|−) = 1
6931

: Because there are few false negatives, the probability of being sick with a

negative test is very low. Being sick is therefore more representative of those who tested

positive than those who tested negative. Taking as a comparison group people with negative

tests, the model of local thinking posits that, instead of p(s|+) = 1
31
, individuals use

p̂(s|+) =
1

Z
p(s|+)

(
p(s|+)

p(s|−)

)θ

=
1

Z

1

31

( 1
31
1

6931

)θ
=

1

Z

1

31

(
6931

31

)θ

,

inflating the probability of being sick given a positive test. Note how this grows arbitrarily

large with fewer false negatives: If p(s|−) goes to zero, p̂(s|+) goes to one independently of

the real p(s|+) and for any θ.

This example shows how local thinking can generate base-rate neglect: The individual

is not giving enough importance to the prior information that very few patients are sick. A

similar logic shows how the model generates representativeness, conjunction, or disjunction

fallacies. (These are intuitive; we refer to the original papers for a discussion.)

As discussed in Gennaioli & Shleifer (2010) and Bordalo et al. (2021a), local thinking

can be motivated by known features of memory retrieval. Individuals associate trait s with

message m the more frequently s and m are seen together (memory recall is associative),

but this is subject to interference of two kinds: It is weaker the more m is observed not

associated with s, and the more s is associated with m. In our example, the association

of being sick with a positive test is weaker the more sick people have a negative test and

the more healthy people have a positive test. Because the latter is exceedingly rare, the

interference is very weak, and the association between sick and positive is easy to recall.

An important aspect of this model is that individuals distort beliefs by inflating true

characteristics—in our example, testing positive does make it more likely that the patient is

sick, but this aspect is inflated. Distorted beliefs are therefore built on a “kernel of truth.”

Bordalo et al. (2016) show how this approach delivers a model of stereotypes: If individuals

use local thinking to construct opinions, they will develop stereotypes, that is, inaccurate

beliefs about the characteristics of different groups. Individuals take existing differences but

exaggerate their importance depending on how representative they are of a given group.

3.3.2. Diagnostic Expectations. Bordalo et al. (2018, 2019) extend this idea to a dynamic

framework, leading to the model of diagnostic expectations. (See also Gennaioli & Shleifer

2018, Bordalo et al. 2020, 2021b, 2022, forthcoming.) In one version of the model, in each

period of an infinite horizon in discrete time, an individual is trying to predict a state st
using the information available at that period, denoted It. As in local thinking, individuals

overestimate the chances of states that are representative of a given information It. But

what is the comparison group? Diagnostic expectations propose to use the information

from the previous period, It−1. Denoting f(s|It) as the true conditional probability, under

diagnostic expectations individuals use the distribution

f̂(s|It) =
1

Z
f(s|It)

(
f(s|It)

f(s|It = It−1)

)θ

where Z is the normalizing term guaranteeing this is a density. To illustrate, suppose s

indicates the value of a stock and It contains good news. Then, the higher θ, the more indi-

viduals overreact : States corresponding to a high price are more representative of the new
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information than the old, and their likelihood is inflated. Indeed, this can give foundations

to extrapolative expectations since good news makes even better news seem more likely.14

For example, suppose that st follows an AR(1) process with Normal shocks, st+1 = bst+ ϵt;

in this case, the only information is the price itself. Suppose the price increases, st > st−1,

and consider some ŝt+1 > st. Because ŝt+1 is more likely under st than it was under st−1,

it is representative of st and its chances are inflated. In fact, in this setup, it is easy to

show that if Et denotes the correct expectations at time t and Êt the expectations under

diagnostic expectations, we must have (Bordalo et al. 2018, Prop. 1):

Êt[st+1] = Et[st+1] + θ (Et[st+1]− Et−1[st+1]) .

Individuals overreact to news, extrapolating current trends more than a Bayesian would do.

Yet, they maintain a kernel of truth: They overreact to news that is genuinely there. Note

how this mechanism can also generate reversals: When good news stops coming, beliefs cool

down even without negative news, leading to belief change not driven by fundamentals. (See

Bianchi et al. forthcoming for more implications.)

3.3.3. Advantages and disadvantages. This general approach has several advantages. Most

importantly, it provides a broad organizing principle derived from known properties of mem-

ory retrieval that applies in very different contexts, from lab experiments to expectations in

finance, capturing a wide range of empirical patterns. It also adopts a tractable functional

form with few parameters, suitable for several applications.

At the same time, it has a few limitations, some of which have already been discussed

(Benjamin 2019, p. 153). The first one pertains to the choice of the comparison group,

which is sometimes not obvious. In our example about medical tests, should the comparison

group be those who tested negative (as we assumed) or the untested (as in one example in

Gennaioli & Shleifer 2018)? The two approaches give very different predictions.15 On the

one hand, this degree of freedom allows the model’s implications to depend on context, and

Bordalo et al. (2016) argue that this flexibility is important to fit experimental data. On

the other hand, the predictive power of the model is unavoidably reduced by the need for

an additional parameter, the choice of which is sometimes difficult. Bordalo et al. (2021a)

relates this to a notion of similarity, which may be manipulated exogenously.

Furthermore, this approach explains only some evidence of non-Bayesian behavior. Of

course, this is not problematic, for we should not expect a model to explain all evidence.

However, consider base-rate neglect. Local thinking can explain some real-world instances

but not many lab experiments, where memory is less likely to play a role. Therefore, we

need a separate model for base-rate neglect in the lab. But isn’t it more natural to assume

that the mechanism giving rise to base-rate neglect in the lab is the same as that operating

outside? If so, local thinking may not be the full explanation for base-rate neglect.

Finally, while this approach can be motivated by features of memory and recall, this

remains a model of a bias—it models non-Bayesian behavior as a mistake. This aspect

sets this approach apart from the attempts to capture non-Bayesian behavior as optimal

14See Barberis (2018, p. 104) for more discussion on representativeness and base-rate neglect as
foundations of “extrapolative beliefs.”

15For example, when the rate of false negatives goes to zero, we get unbounded distortion for any
θ when the comparison group is those who test negative, but a more limited one if the comparison
group is the untested.

14 Ortoleva



reactions to cognitive limitations, discussed in Section 5. (Of course, future research may

show how this bias is an optimal reaction to cognitive bounds; to our knowledge, however,

this has not been done.)

3.4. Biases due to temptation

Another type of deviation from Bayes’ rule takes the form of temptation and is connected

to the literature on temptation and self-control that originated with Gul & Pesendorfer

(2001). For example, individuals who receive a particularly good signal may overreact and

become overly optimistic, or they may underreact and fail to appreciate the good news.

In either case, they act as if they updated a prior different from the one they used before

information.

Epstein (2006) introduces this idea and studies a three-period model in which, at time

0, agents have a prior over the states and a belief about the connection between the signals

in period 1 and the state. However, agents also know that they will be tempted to devi-

ate from Bayes’ rule, e.g., being too exuberant or too cautious. As in Gul & Pesendorfer

(2001), this conflict is captured by studying period 0 preferences over menus faced in period

1. Epstein (2006) provides a very neat representation theorem and shows how the model

accommodates under- and overreaction, base-rate neglect, sample bias, as well as repre-

sentativeness. Epstein et al. (2008) extends the model to infinite horizon settings, while

Epstein et al. (2010) studies additional long-run implications.

4. Questioning the Prior

Typical experiments on updating provide subjects with the correct prior belief and all

conditional likelihoods, and deviations from Bayes’ rule can be reasonably classified as

mistakes. However, this normative appeal is less clear in natural environments where beliefs

are subjective. Individuals who need to make choices that depend say, on the return of a

stock or on GDP growth, do not have access to an objective prior belief and will have to

form a subjective prior. But updating subjective priors may be different. For example,

suppose that our individual receives some unexpected news, information that was unlikely

given their adopted prior, such as an unusually high earning announcement for a stock. In

this case, the individual may go beyond Bayes’ rule: They may reconsider whether they

were using the right prior in the first place. Because the prior was subjectively chosen,

they may well wonder if they had made the right choice. Clearly, this is a different type of

non-Bayesian behavior than the ones discussed in the previous section.

It is worth emphasizing that this approach is not unusual in the development of science,

including in the social sciences. Scholars often use models to understand processes and

typically look at existing data to estimate model parameters and make predictions; they may

entertain multiple models simultaneously, but rarely consider the universe of all possible

models; for example, to our knowledge, all central banks use a finite (and not extensive)

subset of macroeconomic models to predict inflation (which is a model itself). Every so

often, new data emerges that seems incompatible with the adopted model. In most cases,

such data was not ruled out by the model (many have full support), but it is sufficiently

unlikely that the model itself is questioned and sometimes replaced. This is a central process

in the development of science, including social sciences and economics, as highlighted in

classical work in epistemology (Kuhn 1962). Yet, it is clearly non-Bayesian.
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4.1. The Hypothesis Testing model

The intuition above is formalized in the Hypothesis Testing (HT) model of Ortoleva

(2012).16 Individuals have a prior π ∈ ∆(Ω), but also a second-order belief (a prior over

priors) ρ ∈ ∆(∆(Ω)), as well as a threshold ϵ ∈ [0, 1).17 The second-order belief ρ indicates

which priors are considered and their relative likelihood, and the initial prior π is the one

with the highest probability, {π} = argmax
π′∈∆(Ω)

ρ(π′).

When new information A arrives, individuals first test to determine if they were using

the right prior, using the threshold ϵ. If A is not unlikely given π, that is, π(A) > ϵ, then

π is kept and updated following Bayes’ rule: When business proceeds as usual, the agent is

Bayesian. However, when the new information was unexpected given the prior, π(A) ≤ ϵ,

then the prior is questioned: Our agent goes back to the prior over priors ρ, updates it

with Bayes’ rule, and chooses the prior to which the updated ρ gives the highest likelihood

(which may also coincide with the previous one). That is, when a “model” performs poorly,

the individual questions it and may replace it with the model that appears most likely given

the new data (and the prior over models).

Formally, recall that πBU
A is the Bayesian’ update of π following A; denote by ρBU

A the

Bayesian’ update of ρ following A, that is, ρBU
A (π̄) = π̄(A)ρ(π̄))∫

∆(Ω) π′(A)ρ(dπ′) for all π̄ ∈ ∆(Ω). We

say that the updated beliefs {πA}A∈Σ admit an HT representation (π, ρ, ϵ) if for all A ∈ Σ,

πA =


πBU
A if π(A) > ϵ

π̄BU
A otherwise

where {π̄} = argmax
π′∈∆(Ω)

ρBU
A (π′).18

Behavior in this model differs from that of a Bayesian who starts from a prior over

priors: In that case, the behavior is Bayesian with a belief that is the expectation of the

prior over priors, accounting for all beliefs in the support of the prior over prior. Instead, the

HT model uses only the belief to which the prior over priors assigns the highest likelihood.

This may appear irrational. Indeed, this could be the behavior followed by a boundedly

rational individual with a “cost of considering models.” Investors trying to forecast GDP

growth may not account for all possible models in economics and finance, as doing so may

be exceedingly costly. Instead, they may focus on a combination of those more likely to be

correct, which is a model itself; indeed, even central banks focus on a selection of models.

This model would then be used and updated until new data emerges that induces our

decision-maker to question it and possibly pick a new one.

We conclude by noting how the HT model does not require the new information to be in

the support of the original prior (π(A) > 0). Indeed, the HT updating rule is well-defined

after zero probability events, as we will discuss in Section 7.

16A related idea appears in the game theory: In Foster & Young (2003), players test their priors
about the opponent’s behavior and revise them if rejected. However, no prescription is given for
how the new prior is chosen. See also Weinstein (2011).

17Ortoleva (2012) studies preferences as primitives, but for simplicity, we rewrite everything in
terms of beliefs. Because the original paper assumes subjective expected utility, very little is lost;
the mapping is routine.

18Note how π̄ is the unique maximizer. Ortoleva (2012) shows how ρ can always be constructed
to allow a unique maximizer. Alternatively, one may include a decision rule that indicates which
prior should be used in the case of indeterminacy.
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4.2. Foundations

We now discuss the foundations of the HT model.

4.2.1. Dynamic Coherence. Consider two events A and B and suppose that, if told that

the state lies in A, the individual is sure it is also in B (πA(B) = 1), and also suppose

that, if told that the state is in B, they are sure it is also in A (πB(A) = 1). This is a

special situation in which, after either event, the individual is also sure of the other event.

Then, one could argue that the informational content of A and B is the same—in both

cases, it is as if the individual has been told A ∩ B. But then, we should have πA = πB .

When A and B are given positive probability by the prior, this is implied by Bayes’ rule

(this happens when the prior assigns probability 0 to A\B and B\A). But this is a much

weaker requirement than Bayes’ rule, as it applies only to special situations. This is the

core requirement of Dynamic Coherence, which extends this idea to a sequence of events:

If after Ai we are sure of Ai+1, and after An we are sure of A1, we have a cycle in beliefs:

then, the informational content of all events is the same, and beliefs should be the same.

Axiom 3 (Dynamic Coherence). For any A1, . . . , An ∈ Σ, if πAi(Ai+1) = 1 for i =

1, . . . , (n− 1) and πAn(A1) = 1, then πA1 = πAn .

Bayesian agents naturally satisfy Dynamic Coherence whenever the events A1, . . . , An

are given positive probability by the prior. But of course, Bayes’ rule is much stronger.

In fact, there is a conceptual difference between this axiom and Dynamic Consistency, the

core foundation of Bayes’ rule. The latter compares beliefs before and after information,

the prior and the posteriors; as such, it cannot restrict reaction to zero probability events.

Instead, Dynamic Coherence imposes consistency of posteriors after different events without

going through the prior, and also applies to events to which the prior gives zero probability.

At the same time, for events that have non-zero probability, Dynamic Coherence is much

weaker than Dynamic Consistency. The two axioms are, therefore, not nested and can be

imposed together, as we will see momentarily.

We are now ready to state the representation theorem. To this end, it is useful to define

a minimal HT model—an HT model such that no strictly smaller ϵ represents the same

behavior. The following theorem is proved in Ortoleva (2012).

Theorem 2. π and {πA}A∈Σ satisfy Consequentialism and Dynamic Coherence if and only

if they admit a minimal HT model representation (π, ρ, ϵ). Moreover, ϵ = 0 if and only if

{πA}A∈Σ also satisfies Dynamic Consistency.

The HT model is obtained by simply replacing Dynamic Consistency with Dynamic

Coherence. Because the two postulates are not nested, adding Dynamic Consistency gives

us the special case of the HT model when ϵ = 0, where behavior coincides with Bayes’ rule

whenever defined, but where the reaction to zero probability events is also prescribed.

4.2.2. Generality. Dominiak et al. (2023) show that the HT model is equivalent to Inertial

Updating (see Section 6.2), which they show generalizes several well-known updating rules,

including the Grether rule. This implies that several models discussed in Section 3—all

those admitting representations using the Grether rule—also admit an HT representation.

Indeed, Dynamic Coherence and Consequentialism put only limited restrictions on behavior.

To see this in the functional form, note that if ϵ is chosen to be close to 1, updating is entirely

controlled by ρ, a high-dimensional object with many degrees of freedom. A drawback of
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the HT model is, therefore, its generality—the other side of the coin of its foundation on

weak axioms. On the other hand, the model predictions coincide with Bayes’ rule for all

events with a likelihood above ϵ, which means that the generality can be modulated by the

choice of ϵ. In general, the HT model can be understood as a useful framework to study

non-Bayesian behavior, but in applications, more structure should be given to ρ and ϵ to

increase predictive power.

5. Deviations due to Bounds to Rationality, Perception, Cognition, or Memory

A third class of models of non-Bayesian behavior ascribes it to limitations in individuals’

ability to acquire or process information. This approach differs conceptually from the

models that assume a bias. Here, individuals react optimally and are, therefore, much

closer to rationality, except they have additional constraints of a cognitive or perceptual

nature. Moreover, biases can be corrected—for example, subjects can be instructed to be

mindful of base-rate neglect—and a benevolent social planner may want to do so. Instead,

deviations due to the optimal reaction to limitations seem much harder to correct.

The models in this section belong to the classical literature in bounded rationality and

to the more recent literature that attempts to explain several biases as optimal reactions

to constraints, deeply related to the models of the Bayesian paradigm in cognitive sciences

discussed in Section 2.2.3; see Gabaix (2019) and Woodford (2020) for recent reviews.

5.1. Bayesian cognitive noise

Recent literature suggests that deviations from Bayes’ rule may be due to the optimal reac-

tion to limitations in perception or processing. To illustrate, consider a problem unrelated

to updating: An individual needs to guess the weight of a package. They can hold it in

their hand for a few seconds to obtain some information. Assume that our individual has a

prior about the weight and that the information is the true weight plus a symmetric noise

of known variance. Then, the posterior will be a combination of the prior and of the signal:

The more informative the signal, the closer the posterior to the signal and the further from

the prior. This is the standard Bayesian way of modeling beliefs with imprecise information,

where subjects know the exact noise.

Several recent papers suggest that this approach can explain many deviations from nor-

mative benchmarks for risk and time preferences (Bhui & Gershman 2018, Woodford 2020,

Gabaix & Laibson 2022, Enke & Graeber 2023). Interestingly, this approach can also ex-

plain deviations from Bayes’ rule. Suppose that individuals have an imprecise perception of

the outcome of Bayesian updating: They may receive a noisy signal of the correct posterior

and be aware of such noise. Assuming for simplicity a binary state space S, suppose that

the prior belief about the correct posterior has mean d and precision τ , while the signal has

an error with mean zero and precision η. Then, the posterior is a convex combination of the

signal and d, giving more weight to the latter the higher η is and the smaller τ is.19 This

has two implications. First, choices will be stochastic because of the noise of the signals.

Second, because the weight on the signal is less than one and the rest of the weight is given

to a value independent of the problem, this mechanically reduces sensitivity to both the

19Enke & Graeber (2023) present in Appendix A a formalization with Beta and Binomial distri-
butions, where closed-form solutions are attained.
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base rate and the likelihood ratio. That is, the optimal behavior of a Bayesian individual

who has a noisy perception of the optimal action is non-Bayesian.

Alternatively, the imprecision in cognition may lie in the strength of the signal. Au-

genblick et al. (2023) propose a model in which signal informativeness is perceived with

noise: Individuals know the direction they should update in but are unsure of how much.

Like above, individuals have an initial belief about informativeness with mean µ and re-

ceive noisy information about it. (This could be noise in the information or uncertainty

about how to incorporate it.) This generates stochasticity in choice and a bias toward the

prior in the dimension in which there is noise: In this case, individuals will bias their belief

about the informativeness of signals towards the average µ. Mechanically, this implies that

individuals overestimate informativeness when informativeness is below the expectation µ

and underestimate it otherwise. In turn, this means that individuals overreact after weakly

informative signals and underreact after strongly informative ones.

Other papers present related models. Ba et al. (2023) combine the effects of cognitive

noise with higher attention to more representative states (thus relating to the approach

of Bordalo et al. 2016). Azeredo da Silveira & Woodford (2019) and Azeredo da Silveira

et al. (2020) present models in which cognitive noise applies to the memory of past states,

showing how this generates, among other things, overreaction in forecasts.

5.1.1. What is non-Bayesian?. A crucial aspect of these approaches is that individuals are

rational and follow Bayesian prescriptions given the noise they face. Indeed, they offer

a fully Bayesian explanation for non-Bayesian behavior. Some may even argue that the

documented behaviors were not really deviations from Bayes’ rule because we were not

accounting for the genuine noise in the information. (Of course, this is mostly a matter

of definitions.) Another advantage is that they explain non-Bayesian behavior using a

modeling framework that, as mentioned above, can also explain several other deviations

from normative benchmarks in risk and time preferences, offering the possibility of a unified

explanation. This unified explanation, however, needs to be subject to rigorous empirical

tests (e.g., like those in Chapman et al. 2023; see also Enke & Graeber 2023). Moreover,

empirical tests should be mindful not only of matching average behavior but of accounting

for heterogeneity—because behavior is often multimodal, and it is essential that models

capture the possible modes instead of a generic average that no individual subject chooses.

On the other hand, it is important to highlight the degrees of freedom inherent in

these modeling approaches. At an abstract level and focusing on standard choice without

external manipulations, their sole general implication is that choices must be biased towards

the prior in the dimension in which we assume that there is noise. By carefully selecting the

prior or the dimension of noise, one can give a “Bayesian rationale” to a very wide range

of behaviors. At the same time, more tests are possible (e.g., manipulating the prior or the

noise), and some have been adopted in the literature. To our knowledge, a careful study of

the broad empirical implications of this approach has not been attempted.

5.2. Other forms of cognitive limitations

Many other papers have suggested bounds to rationality, memory, or perception that gen-

erate violations of Bayes’ rule. We focus on a few well-known or recent examples.

In the models discussed in Section 5.1, agents optimally react to noisy information, but

the information is exogenous. Other models also include the choice of attention. Gabaix
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(2014) introduces the sparse-max model, where the attention agents pay to a variable de-

pends on how useful they believe it is; as discussed in Gabaix (2019, 2.3), this may generate

several departures from Bayes’ rule. In Schwartzstein (2014), individuals predict a variable

using observables, but attend to a covariate only if they (currently) think it is sufficiently

likely to be predictive. They follow Bayes’ rule but are näıve in the sense of not attempting

to infer what the unobserved variables may have been. In Khaw et al. (2017), individuals

need to estimate the likelihood of a varying state that governs a stream of observations, and

the decision of whether and how much to adjust the estimates is the solution of a rational

inattention problem (Sims 2003). This leads to infrequent non-Bayesian adjustments.

Wilson (2014) studies the optimal behavior of agents with finite memory states who

face a binary decision and a stochastic sequence of signals; the model can generate several

deviations from Bayes’ rule, including confirmation bias and polarization. (See also Hellman

& Cover 1970.) Mullainathan (2002) presents a model of bounded memory recording and

retrieval that may also generate over- and under-reactions.

The models in Fryer & Jackson (2008) and Jakobsen (2021) are based on “coarse up-

dating”: Decision-makers simplify the problem by considering only a subset of possible

probabilities or categories (Mullainathan et al. 2008 apply a similar approach to persua-

sion). Jakobsen (2021), for example, gives the axiomatic foundations of a model in which

individuals partition the probability simplex in (convex) cells, each of which has a rep-

resentative distribution; after information, they adopt the belief that corresponds to the

representative distribution in the cell where the Bayesian posterior belongs.

Finally, several models in finance show how forms of bounded rationality can lead to

extrapolative beliefs. In the model of Hong & Stein (1999), while some investors receive

information about fundamentals, others observe only price changes; the latter group will,

therefore, follow price changes to infer fundamentals but will continue to do so even when

all information is incorporated into the price, leading the price to “overshoot.” See Barberis

(2018) for a review of models of extrapolative beliefs in finance.

Finally, a growing literature studies learning with misspecified beliefs, which may gen-

erate behavior that appears non-Bayesian. Several of these papers connect misspecification

to bounded rationality, with decision-makers using overly simple models. See, among many,

Barberis et al. (1998), Daniel et al. (1998), Hong et al. (2007), Fuster et al. (2010), Ortoleva

& Snowberg (2015), Esponda & Pouzo (2016), Spiegler (2016), Glaeser & Nathanson (2017),

Heidhues et al. (2018), Eliaz & Spiegler (2020), Gagnon-Bartsch et al. (2021), Gagnon-

Bartsch & Bushong (2022), Montiel Olea et al. (2022), Ba (2023), Frick et al. (2023). As

mentioned in the introduction, however, we will not discuss these papers here.

6. Other Models of Non-Bayesian Behavior

6.1. Utility from beliefs

A very different reason why people may be non-Bayesian is because they want to believe

that a specific state is true and update more after “good news” than “bad news.” (See

Benjamin 2019, Section 9 for a discussion of the complex evidence.) Like confirmation

bias, this asymmetry can be easily captured with a modified Grether rule, where updating

strength depends on the direction of the evidence (Benjamin 2019, Section 9.1). However,

several other approaches have been proposed.

In Bénabou & Tirole (2002), individuals can choose to ignore (or fail to remember)

signals that point to states of the world they like less, in a “game of self-deception.” (See
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Gottlieb 2010 for a dynamic model.) In Bénabou (2013), a group of individuals partici-

pates in a joint enterprise that gives a payoff that depends on their actions and on a joint

productivity shock, about which they receive a public binary signal. Agents derive antici-

patory utility from future payoffs and can choose to incorporate the signal or manipulate

it to encode it as if it were the opposite (at a cost). The main insight is that information

manipulation is a strategic substitute when agents benefit from others’ over-optimism, and

a strategic complement when agents are made worse off by others’ mistakes. In the latter

case, we can have multiple equilibria and a “contagious” denial.

Möbius et al. (2022) propose a model in which individuals also experience a direct utility

benefit from believing that one state has higher chances. Following Brunnermeier & Parker

(2005), agents can commit to a biased updating rule to maximize total utility, trading off the

desire to believe in a given state with the cost of inaccurate choices. The paper shows that

the optimal rule is asymmetric—it responds differently to good versus bad news—as well as

conservative—agents underreact to all signals. In Caplin & Leahy (2019), individuals can

distort the mapping between messages and states to increase their belief in a given state

but have to pay a cost that depends on the extent of distortion.

6.2. Updating as minimizing a distance

A different way of thinking about updating is as distance minimization; in economics, this

appears in Perea (2009) and Dominiak et al. (2023). Following the latter, for finite Ω, define

a distance function with respect to the prior as any function that assigns the smallest value

to the prior itself: d : ∆(Ω) → R is a distance function with respect to π ∈ ∆(Ω), denoted

dπ, if dπ(π) < dπ(π
′) for all π′ ∈ ∆(Ω)\{π}. (Note that dπ may violate symmetry or the

triangle inequality and may therefore not be a distance; we follow the paper in maintaining

this terminology.) An individual follows Inertial Updating if there is a distance function

dπ such that for all A ∈ Σ, πA = argmin
π′∈∆(A)

dπ(π
′). Simply, the updated belief after A is the

belief that is closest to the prior among those that have support only in A. Considering

different ds, this approach can capture several updating rules. Bayes’ rule is obtained if

dπ(π
′) = −

∑
ω∈Ω π(ω)σ

(
π′(ω)
π(ω)

)
where σ is strictly increasing and strictly concave. (If

σ(x) = ln(X), this gives the Kullback-Leibler divergence, connecting this approach to very

well-known results in information theory, e.g., Berk 1966; see also Zhao 2022, 2.3.) The

Euclidean distance gives πA(s) = π(s)+ 1−π(A)
|A| : deviations from Bayes’ rule in which prior

probabilities are reallocated uniformly. The paper also shows that an appropriately chosen

distance delivers the Grether rule and interesting generalizations.

Surprisingly, Dominiak et al. (2023) show that Inertial Updating is behaviorally equiv-

alent to the HT model discussed in Section 4: Preferences admit an Inertial Updating

representation if and only if they admit an HT representation if and only if they satisfy

Consequentialism and Dynamic Coherence. This provides behavioral foundations and illus-

trates how distance minimization may be a convenient form to study non-Bayesian behavior.

7. Reaction to zero probability events

A well-known limitation of Bayes’ rule is that it does not prescribe updating after informa-

tion to which the prior assigns probability zero.This limitation has relevant consequences,

especially in game theory, since in most notions of equilibria, beliefs assign probability zero

to off-equilibrium behavior. Bayes’ rule, therefore, imposes no discipline on off-equilibrium
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beliefs, a well-known concern of Bayesian Nash Equilibrium that led to the development of

several refinements. We now briefly review the main extensions of Bayes’ rule to reactions

to zero probability events in economics.

The Conditional Probability System (CPS) of Myerson (1986a,b) defines {πA}A∈Σ such

that πA(ω) = πB(ω)πA(B) for all ω ∈ B ⊆ A. While Bayes’ rule implies this condition

if πA(B) ̸= 0, all conditional probabilities are defined in CPS. Another approach is the

Lexicographic Conditional Probability Systems (LCPS) of Blume et al. (1991), according

to which individuals adopt a vector of beliefs that they use lexicographically; this updating

rule is obtained by relaxing (Archimedean) continuity.

Two of the models discussed earlier in the paper also include updating rules after proba-

bility zero events. The HT model (Section 4) specifies the posteriors after any event. When

ϵ = 0, the HT model coincides with Bayes’ rule whenever it is defined but extends it after

probability zero events, when individuals will necessarily have to reconsider their prior;

the model proposes a way to select a new prior based on updating the prior over priors.

Dominiak & Lee (2023) use the HT model to define a refinement of Perfect Bayesian Nash

Equilibria, showing how it relates to, but does not coincide with, well-known refinements

like the Intuitive Criterion.

Because the HT model is behavioral equivalent to Intertial Updating (Section 6.2), also

the latter specifies behavior after probability zero events. Perhaps surprisingly, Dominiak

et al. (2023) show that the CPS model is, in fact, a special case of both the HT model and

Intertial Updating. (LCPS are instead not continuous and therefore not nested.)

8. Discussion and Conclusions

We have discussed several alternatives to Bayes’ rule. We began with models of non-

Bayesian behavior due to a bias— a pull towards suboptimal behavior related to a heuristic

or a mistake. Next, we analyzed non-Bayesian behavior due to individuals questioning their

prior: When the prior is subjectively chosen and individuals are presented with evidence

that appears unlikely given the prior, they may wonder if they were using the right prior to

begin with. We then considered models of non-Bayesian behavior due to bounds to cogni-

tion, memory, or perception, and models of non-Bayesian behavior due to motivated beliefs

and updating as minimizing a distance. Finally, we briefly reviewed models that extend

Bayes’ rule to capture reactions to information to which the prior assigned probability zero.

Overall, the literature has proposed very different kinds of models. Some models provide

simple and tractable functional forms with few parameters; this is the case with several

models meant to capture specific biases, such as the Law of Small Numbers or the NBLLN.

Other models are more complex or have more complex parameters, often because they

are derived from postulates that aim to be general; this is the case with the HT model, for

which, in applications, one needs to assume a simple functional form for the prior over priors.

While most models we discussed focus on updating, some relate non-Bayesian behavior to

other phenomena, offering the possibility of a unified, broader explanation; this is the case

with the models of cognitive noise. Several models are tailored to capture only very specific

deviations, like the Law of Small Numbers, while others attempt to be much more general,

trying to derive several empirical regularities from a unique cause. This is the case with local

thinking, which derives a variety of regularities in lab experiments and in forecasting from

biases in memory, or the models of cognitive noise, based on a framework that can provide

a “Bayesian” explanation for several regularities. These attempts have the advantage of
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generality, although typically at the cost of more flexibility. Rigorous empirical tests will

need to test these approaches and offer ways to limit their flexibility.

From this brief overview, it is clear that the literature has proposed many different

models, each with advantages and disadvantages. In general, research on models of non-

Bayesian behavior does not seem to have reached the level of maturity of those areas of

behavioral economics where a “leading” model has emerged—for better or worse, depending

on one’s opinion of the leading model. This may be inevitable: One may argue that non-

Bayesian behavior is, in fact, a broad umbrella that refers to several different phenomena

that are only tangentially related, and one should not hope, or even try, to obtain a unified

model. Yet, the literature has not converged even for specific important phenomena: There

is no “leading” model of base-rate neglect or of overreaction to unexpected news. This is

problematic, for it hinders the development of applications: What model should we use

to study the implications of base-rate neglect on, say, matching or finance? Indeed, very

few papers study the implications of non-Bayesian behavior on several economic choices,

especially compared to other areas of behavioral economics like reference dependence or

non-exponential discounting, for which extensive literature has analyzed the implications in

a wide range of settings. This may be because we have yet to agree on the most important

violations of Bayes’ rule, or on which are the correct models, or it may be because economists

find it difficult to accept non-Bayesian behavior despite overwhelming evidence.

Surely, more empirical work is needed. While several deviations have been robustly

documented, only modest progress has been made in documenting which are most conse-

quential for economics. Indeed, outside of finance and related forecasting, comparably little

empirical work has studied belief updating in real-world behavior, where individuals are not

provided exogenous priors and may need to seek and integrate information; surprisingly lit-

tle is known about how behavior differs from bookbag-and-poker-chips lab experiments, and

which are the prominent biases. Moreover, comparatively little empirical work has studied

the heterogeneity of behavior: several papers analyze the empirical fit for average behav-

ior, but this may be misleading if we have heterogeneous, multimodal responses; instead of

fitting average behavior chosen by no individual subject, we should aim to understand the

right model, or combination of models, that capture the most important modes.

More theoretical work is, however, also necessary. More work is needed to develop

models that provide the right balance of tractability, empirical fit, and a convincing story,

possibly connecting non-Bayesian behavior to other biases. And much more work is needed

to study the implications of non-Bayesian behavior in various economic environments. This

is great news for researchers, for an important area has yet to be understood in full.
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