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CAUTIOUS EXPECTED UTILITY AND THE CERTAINTY EFFECT

BY SIMONE CERREIA-VIOGLIO,
DAVID DILLENBERGER, AND PIETRO ORTOLEVA1

Many violations of the independence axiom of expected utility can be traced to sub-
jects’ attraction to risk-free prospects. The key axiom in this paper, negative certainty
independence (Dillenberger (2010)), formalizes this tendency. Our main result is a util-
ity representation of all preferences over monetary lotteries that satisfy negative cer-
tainty independence together with basic rationality postulates. Such preferences can
be represented as if the agent were unsure of how to evaluate a given lottery p; in-
stead, she has in mind a set of possible utility functions over outcomes and displays a
cautious behavior: she computes the certainty equivalent of p with respect to each pos-
sible function in the set and picks the smallest one. The set of utilities is unique in a well
defined sense. We show that our representation can also be derived from a “cautious”
completion of an incomplete preference relation.

KEYWORDS: Preferences under risk, Allais paradox, negative certainty indepen-
dence, incomplete preferences, cautious completion, multi-utility representation.

1. INTRODUCTION

DESPITE ITS UBIQUITOUS PRESENCE IN ECONOMIC ANALYSIS, the paradigm
of expected utility is often violated in choices between risky prospects. While
such violations have been documented in many different experiments, a spe-
cific preference pattern emerges as one of the most prominent: the tendency
of people to favor risk-free options—the so-called certainty effect (Kahneman
and Tversky (1979)). This is shown in Allais’ common ratio and common con-
sequence paradoxes, as well as in many more recent experimental studies. (Sec-
tion 6 discusses this evidence at length.)

Dillenberger (2010) suggests a way to define the certainty effect behaviorally
by introducing an axiom called negative certainty independence (NCI). NCI
states that for any two lotteries p and q, any number λ in [0�1], and any lottery
δx that yields the prize x for sure, if p is preferred to δx, then λp + (1 − λ)q
is preferred to λδx + (1 − λ)q. That is, if the sure outcome x is not enough
to compensate the decision maker (henceforth DM) for the risky prospect p,
then mixing it with any other lottery, thus eliminating its certainty appeal, will
not result in the mixture of δx being preferred to the corresponding mixture
of p. NCI is weaker than the independence axiom; in particular, it permits in-
dependence to fail when the certainty effect is present, allowing the DM to
favor certainty, but ruling out the converse behavior.

1We thank Faruk Gul, Yoram Halevy, Fabio Maccheroni, Massimo Marinacci, Efe Ok, Wolf-
gang Pesendorfer, Gil Riella, and Todd Sarver for very useful comments and suggestions. The
co-editor and the referees provided valuable comments that improved the paper significantly. We
greatly thank Selman Erol for his help in the early stages of the project. Cerreia-Vioglio gratefully
acknowledges the financial support of ERC (advanced Grant BRSCDP-TEA). Ortoleva gratefully
acknowledges the financial support of NSF Grant SES-1156091.
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In this paper, we characterize the class of continuous, monotone, and com-
plete preference relations, defined on lotteries over some interval of monetary
prizes, that satisfy NCI. That is, we characterize a new class of preferences that
accommodate the certainty effect, together with very basic rationality postu-
lates. We show that any such preference relation admits the following repre-
sentation: there exists a set W of strictly increasing (Bernoulli) utility functions
over monetary outcomes, such that the value of any lottery p is given by

V (p) = inf
v∈W

c(p�v)�

where c(p�v) is the certainty equivalent of lottery p calculated using the utility
function v. That is, if we denote by Ep(v) the expected utility of p with respect
to v, then c(p�v)= v−1(Ep(v)).

We call this representation a cautious expected utility representation and
interpret it as follows. The DM acts as if she were unsure how to evaluate each
given lottery: she does not have one, but a set of possible utility functions over
monetary outcomes. She then reacts to this multiplicity using a form of caution:
she evaluates each lottery according to the lowest possible certainty equivalent
corresponding to some function in the set. Note that c(δx� v)= x for all v ∈W ,
which means that while the DM acts with caution when evaluating general
lotteries, such caution does not play a role when evaluating degenerate ones.
This captures the certainty effect.

The cautious expected utility model is also linked with the notion of a com-
pletion of incomplete preferences. Consider a DM who has an incomplete
preference relation over lotteries, which is well behaved (that is, a reflexive,
transitive, monotone, and continuous binary relation that satisfies indepen-
dence). The DM is asked to choose between two options that the original pref-
erence relation is unable to compare; she then needs to choose a rule to com-
plete her ranking. Suppose that she follows what we call a cautious completion:
if the original relation is unable to compare a lottery p with a degenerate lot-
tery δx, then in the completion the DM opts for the latter—“when in doubt, go
with certainty.” We show that there always exists a unique cautious completion
and that it admits a cautious expected utility representation.2

We then discuss the relation of our model with the theoretical and empiri-
cal literature. We argue that our model suggests a useful way of interpreting
existing empirical evidence and derives new theoretical predictions, especially
emphasizing the following three points.

First, similarly to the most popular alternatives to expected utility (the rank
dependent utility (RDU) model of Quiggin (1982) and the betweenness class

2In fact, we show that it admits a cautious expected utility representation with the same set of
utilities that can be used to represent the original incomplete preference relation (in the sense of
the expected multi-utility representation of Dubra, Maccheroni, and Ok (2004)).
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of Dekel (1986) and Chew (1989)), our model accommodates the certainty ef-
fect by weakening the independence axiom. In terms of generality, preferences
in our class neither nest nor are nested in those that satisfy betweenness, and
are distinct from RDU, in the sense that RDU satisfies NCI only in the limit-
ing case of expected utility. In terms of the key axiom delineating the departure
from expected utility, while NCI is yet to be tested in its fullness, it is built on
the certainty effect, which has solid empirical support. On the other hand, the
analogous axioms (comonotonic/ordinal independence and betweenness) are
frequently violated in experiments.

Second, our model can accommodate some evidence on the certainty effect
(e.g., the presence of Allais-type behavior with large stakes but not with small
ones), which poses difficulties to many popular alternative models.

Third, our model is consistent with the main stylized facts of preferences un-
der risk as surveyed in Camerer (1995) and Starmer (2000). Moreover, some
of these facts are predicted by our model without requiring any additional as-
sumptions on the functional form.

The remainder of the paper is organized as follows. Section 2 presents the ax-
iomatic structure, the main representation theorem, and the uniqueness prop-
erties of the representation. Section 3 characterizes risk attitudes and com-
parative risk aversion. Section 4 presents the result on the completion of in-
complete preference relations. Section 5 surveys related theoretical models.
Section 6 discusses the experimental evidence. All proofs are provided in the
Appendices.

2. THE MODEL

2.1. Framework

Consider a compact interval [w�b] ⊂ R of monetary prizes. Let Δ be the set
of lotteries (Borel probability measures) over [w�b], endowed with the topol-
ogy of weak convergence. We denote by x� y� z generic elements of [w�b] and
denote by p�q� r generic elements of Δ. We denote by δx ∈ Δ the degener-
ate lottery (Dirac measure at x) that gives the prize x ∈ [w�b] with certainty.
The primitive of our analysis is a binary relation � over Δ. The symmetric and
asymmetric parts of � are denoted by ∼ and �, respectively. The certainty
equivalent of a lottery p ∈ Δ is a prize xp ∈ [w�b] such that δxp ∼ p.

We start by imposing the following basic axioms on �.

AXIOM 1—Weak Order: The relation � is complete and transitive.

AXIOM 2—Continuity: For each q ∈ Δ, the sets {p ∈ Δ : p � q} and {p ∈ Δ :
q � p} are closed.

AXIOM 3—Weak Monotonicity: For each x� y ∈ [w�b], x ≥ y if and only if
δx � δy .
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These three axioms are standard postulates. Weak Order is a common as-
sumption of rationality. Continuity is needed to represent � through a contin-
uous utility function. Finally, under the interpretation of Δ as monetary lotter-
ies, Weak Monotonicity simply implies that more money is better than less.

2.2. Negative Certainty Independence

Consider a version of Allais’ paradox (called the common ratio effect), in
which subjects choose between A = δ3000 and B = 0�8δ4000 + 0�2δ0, and also
between C = 0�25δ3000 + 0�75δ0 and D = 0�2δ4000 + 0�8δ0. The typical finding
is that the majority of subjects tend to systematically violate the independence
axiom of expected utility by choosing the pair A and D.3,4

 Kahneman and Tver-
sky (1979) called this pattern of behavior the certainty effect. The next axiom,
introduced in Dillenberger (2010), captures the certainty effect with the fol-
lowing relaxation of independence.

AXIOM 4—Negative Certainty Independence (NCI): For each p�q ∈ Δ, x ∈
[w�b], and λ ∈ [0�1],

p� δx �⇒ λp+ (1 − λ)q � λδx + (1 − λ)q�

NCI states that if the sure outcome x is not enough to compensate the DM
for the risky prospect p, then mixing it with any other lottery, thus eliminating
its certainty appeal, will not result in the mixture of x being more attractive
than the corresponding mixture of p. In particular, xp, the certainty equivalent
of p, might not be enough to compensate for p when part of a mixture.5 In
this sense, NCI captures the certainty effect. When applied to the common
ratio experiment, NCI only posits that if B is chosen in the first problem, then
D must be chosen in the second one. Specifically, it allows the DM to choose
the pair A and D, in line with the typical pattern of choice. Coherently with
this interpretation, NCI captures the certainty effect as defined by Kahneman
and Tversky (1979)—except that, as opposed to the latter, NCI applies also to
lotteries with three or more possible outcomes and can thus apply to broader

3Recall that a binary relation � satisfies independence if and only if for each p�q� r ∈ Δ and for
each λ ∈ (0�1], we have p � q if and only if λp+ (1 − λ)r � λq+ (1 − λ)r.

4This example is taken from Kahneman and Tversky (1979). Of 95 subjects, 80 percent chose A
over B, 65 percent chose C over D, and more than half chose the pair (A, D). Note that prospects
C and D are the 0�25 : 0�75 mixture of prospects A and B, respectively, with δ0. This means that
the only pairs of choices consistent with expected utility are (A, C) and (B, D).

5We show in Appendix A (Proposition 6) that our axioms imply that � preserves first order
stochastic dominance and, thus, for each lottery p ∈ Δ, there exists a unique certainty equiva-
lent xp.
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evidence.6 For example, the exact same theoretical restrictions can also be used
to address Allais’ common consequence effect.7

In addition to capturing the certainty effect, NCI puts additional structure on
preferences over Δ. For example, NCI (in addition to the other basic axioms)
implies convexity: for each p�q ∈ Δ, if p ∼ q, then λp+ (1−λ)q � q for all λ ∈
[0�1].8 NCI thus suggests weak preference for randomization between indiffer-
ent lotteries. Similarly, NCI implies that if p ∼ δx, then λp+ (1 −λ)δx ∼ p for
all λ ∈ [0�1], which means neutrality toward mixing a lottery with its certainty
equivalent.

To illustrate these restrictions, we now discuss the pattern of indifference
curves in any Marschak–Machina triangle, which represents all lotteries over
three fixed outcomes x3 > x2 > x1 (see Figure 1). NCI implies three restrictions

FIGURE 1.—NCI and the Marschak–Machina triangle.

6Kahneman and Tversky (1979) define the certainty effect as the requirement that for x� y ∈
[w�b] and α�β ∈ (0�1), if αδy + (1−α)δ0 is indifferent to δx, then αβδy + (1−αβ)δ0 is preferred
to βδx + (1 −β)δ0. Note that this immediately follows from NCI.

7In Allais’ common consequence effect, subjects choose between A = δ1M and B = 0�1δ5M +
0�89δ1M + 0�01δ0, and also between C = 0�11δ1M + 0�89δ0 and D = 0�1δ5M + 0�9δ0. The typical
pattern of choice is the pair (A, D). It can be shown that when combined with Axioms 1–3, the
only way to violate NCI is to choose the pair (B, C), and that any such violation of NCI has a
corresponding violation in the common ratio effect (and vice versa). Our focus on the common
ratio effect in motivating NCI is made mostly for explanatory purposes.

8To see this, assume p ∼ q and apply NCI twice to obtain that λp + (1 − λ)q � λδxp +
(1 − λ)q � λδxp + (1 − λ)δxq = δxq ∼ q.
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on these curves: (i) by convexity, all curves must be convex; (ii) the bold indif-
ference curve through the origin (which represents the lottery δx2 ) is linear due
to neutrality toward mixing a lottery with its certainty equivalent; and (iii) this
bold indifference curve is also the steepest, that is, its slope relative to the
(p1�p3) coordinates exceeds that of any other indifference curve in the trian-
gle.9 Since, as explained by Machina (1982), the slope of an indifference curve
expresses local attitude toward risk (greater slope corresponds to higher local
risk aversion), property (iii) captures the certainty effect by, loosely speaking,
requiring that local risk aversion is at its peak when it involves a degenerate lot-
tery. In Section 6, we show that this pattern of indifference curves is consistent
with a variety of experimental evidence on decision making under risk.

2.3. Representation Theorem

Before stating our representation theorem, we introduce some notation. We
say that a function V : Δ → R represents � when p � q if and only if V (p) ≥
V (q). Denote by U the set of continuous and strictly increasing functions v
from [w�b] to R. We endow U with the topology induced by the supnorm. For
each lottery p and function v ∈ U , Ep(v) denotes the expected utility of p with
respect to v. The certainty equivalent of lottery p calculated using the utility
function v is thus c(p�v)= v−1(Ep(v)) ∈ [w�b].

DEFINITION 1: Let � be a binary relation on Δ and let W be a subset of U .
The set W is a cautious expected utility representation of � if and only if the
function V : Δ→R, defined by

V (p) = inf
v∈W

c(p�v) ∀p ∈ Δ�

represents �. We say that W is a continuous cautious expected utility repre-
sentation if and only if V is also continuous.

THEOREM 1: Let � be a binary relation on Δ. The following statements are
equivalent:

(i) The relation � satisfies Weak Order, Continuity, Weak Monotonicity, and
Negative Certainty Independence;

(ii) There exists a continuous cautious expected utility representation of �.

According to a cautious expected utility representation, the DM has a set W
of possible utility functions over monetary outcomes. While each of these func-
tions is strictly increasing, that is, agrees that “more money is better,” these
functions may have different curvatures: it is as if the DM is unsure how to

9The steepest middle slope property is formally derived in Lemma 3 of Dillenberger (2010).
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evaluate each lottery. The DM reacts to this multiplicity with caution: she eval-
uates each lottery p by using the utility function that returns the lowest certainty
equivalent.

As an example, suppose the DM needs to evaluate the lottery p that pays
either $0 or $10,000, both equally likely. The DM may find it difficult to give
a precise answer, but, instead, finds it conceivable that her certainty equiva-
lent of p falls in the range [$3500�$4500], and that this interval is tight (that
is, the end points are plausible evaluations). This is the first component of the
representation: the DM has a set of plausible valuations that she considers.
Nevertheless, when asked how much she would be willing to pay to obtain p,
she is cautious and answers at most $3500. This is the second component. Note
that if W contains only one element, then the model reduces to expected util-
ity. Moreover, since each v ∈W is strictly increasing, it preserves monotonicity
with respect to first order stochastic dominance.

An important feature of the representation in Theorem 1 is that the DM
uses the utility function that minimizes the certainty equivalent of a lottery,
instead of its expected utility. This leads to the certainty effect: while the DM
acts with caution when evaluating general lotteries, caution does not play a role
when evaluating degenerate ones—independently of the utility function being
used, the certainty equivalent of receiving the prize x for sure is x.

EXAMPLE 1: Let [w�b] ⊆ [0�∞) and W = {u1�u2}, where

u1(x) = −exp(−βx)� β > 0� and u2(x)= xα� α ∈ (0�1)�

Consider the common ratio example from Section 2.2. Let α = 0�8 and
β = 0�0002. We have V (B) = c(B�u1) 
 2904 < 3000 = V (A), but V (D) =
c(D�u2)
 535 > 530 
 c(C�u2)= V (C). Thus A � B but D� C.

Example 1 shows that one could address experimental evidence related to
the certainty effect using a set W that includes only two utility functions. The
key feature that allows this is that there is no unique v ∈ W that minimizes
the certainty equivalents for all lotteries; otherwise, only v would matter and
behavior would coincide with expected utility.10

The interpretation of the cautious expected utility representation is differ-
ent from some of the most prominent existing models of non-expected utility.
For example, the common interpretation of rank dependent utility is that the
DM knows her utility function but she distorts probabilities. By contrast, in
a cautious expected utility representation, the DM takes probabilities at face

10This implies, for example, that if all utilities in W have constant relative risk aversion (that
is, vi ∈ W only if vi(x) = xαi for some αi ∈ (0�1)), then preferences will be indistinguishable from
expected utility with coefficient of relative risk aversion equal to 1 − minj αj . In Section 2.6, we
suggest some convenient parametric class of utility functions that can be used in applications.
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value, but she is unsure of which utility function to use and applies caution.
Rather, the interpretation of our model is reminiscent of the maxmin expected
utility of Gilboa and Schmeidler (1989) under ambiguity, in which the DM has
a set of probabilities and evaluates acts using the worst probability in the set.
Our model can be seen as a corresponding model under risk. This analogy
with maxmin expected utility will be strengthened by our analysis in Section 4,
where we argue that both models can be derived from extending incomplete
preferences using a cautious rule.

Before proceeding, we introduce a notion that will play a major role in the
subsequent analysis. Let �′ be the largest subrelation of � that satisfies the
independence axiom. Formally, define �′ on Δ by

p�′ q ⇐⇒ λp+ (1 − λ)r � λq+ (1 − λ)r ∀λ ∈ (0�1]�∀r ∈ Δ�(1)

In the context of choice under risk, this derived relation was proposed and
characterized by Cerreia-Vioglio (2009). It parallels a notion introduced in
the context of ambiguity by Ghirardato, Maccheroni, and Marinacci (2004)
(see also Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi
(2011)). Since it satisfies independence, �′ is often interpreted as including the
comparisons that the DM is confident in making. We refer to �′ as the linear
core of �.

2.4. Proof Sketch of Theorem 1

In what follows, we sketch the proof of Theorem 1; a complete proof appears
in Appendix B. We focus here only on the sufficiency of the axioms for the
representation.

Step 1. Define the linear core of �. As we have discussed above, we introduce
the binary relation �′ on Δ defined in (1).

Step 2. Find the set W ⊆ U that represents �′. By Cerreia-Vioglio (2009),
�′ is reflexive, transitive, continuous, and satisfies independence. In partic-
ular, there exists a set W of continuous functions on [w�b] that constitutes
an expected multi-utility representation of �′, that is, p �′ q if and only if
Ep(v) ≥ Eq(v) for all v ∈ W (see Dubra, Maccheroni, and Ok (2004)). Since
� satisfies Weak Monotonicity and NCI, �′ also satisfies Weak Monotonicity.
Thus, W can be chosen to be composed only of strictly increasing functions.

Step 3. Representation of �. We show that � admits a certainty equivalent
representation, that is, there exists V : Δ → R such that V represents � and
V (δx)= x for all x ∈ [w�b].

Step 4. Relation between � and �′. We note that (i) � is a completion of �′,
that is, p �′ q implies p � q, and (ii) for each p ∈ Δ and for each x ∈ [w�b],
p ��′ δx implies δx � p. The latter is an immediate implication of NCI.

Step 5. Final step. We conclude the proof by showing that we must have
V (p) = infv∈W c(p�v) for all p ∈ Δ. For each p, find x ∈ [w�b] such that
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p ∼ δx, which means V (p) = V (δx) = x. First note that we must have V (p) =
x≤ infv∈W c(p�v). If not, then we would have that x > c(p�v) for some v ∈W ,
which means, by Step 2, p ��′ δx. But by Step 4(ii), we would obtain δx � p,
contradicting δx ∼ p. Second, we must have V (p) = x ≥ infv∈W c(p�v): if
not, then we would have x < infv∈W c(p�v). We could then find y such that
x < y < infv∈W c(p�v), which, by Step 2, would yield p �′ δy . By Step 4(i), we
could conclude that p� δy � δx, contradicting p ∼ δx.

2.5. Uniqueness and Properties of the Set of Utilities

We now discuss the uniqueness properties of the set W in a cautious ex-
pected utility representation. We define the set of normalized utility functions
Unor = {v ∈ U : v(w) = 0, v(b) = 1} and, without loss of generality, confine our
attention to a normalized representation (that is, when W ⊆ Unor). We first
show that even with this normalization, we are bound to find uniqueness prop-
erties only “up to” the closed convex hull. Denote by co(W) the closed convex
hull of a set W ⊆ Unor.

PROPOSITION 1: If W�W ′ ⊆ Unor are such that co(W)= co(W ′), then

inf
v∈W

c(p�v)= inf
v∈W ′ c(p�v) ∀p ∈ Δ�

Moreover, W in general will not be unique, even up to the closed convex
hull, as we can always add redundant utility functions that will never achieve
the infimum. To see this, consider any set W in a cautious expected utility
representation and add to it a function v that is a continuous, strictly increas-
ing, and strictly convex transformation of some other function u ∈ W . The set
W ∪ {v} will give a cautious expected utility representation of the same prefer-
ence relation, as the function v will never be used in the representation.11

Once we remove these redundant utilities, we can identify a unique (up to
the closed convex hull) set of utilities. In particular, for each preference rela-
tion that admits a continuous cautious expected utility representation, there
exists a set Ŵ such that any other cautious expected utility representation W
of these preferences is such that co(Ŵ) ⊆ co(W). In this sense, Ŵ is a “min-
imal” set of utilities. Moreover, the set Ŵ will have a natural interpretation
in our setup: it constitutes a unique (up to the closed convex hull) expected
multi-utility representation of the linear core �′, the derived relation defined
in (1).

THEOREM 2: Let � be a binary relation on Δ that satisfies Weak Order, Conti-
nuity, Weak Monotonicity, and Negative Certainty Independence. Then there exists
Ŵ ⊆ Unor such that the following statements hold:

11Since u ∈ W and c(p�u) ≤ c(p�v) for all p ∈ Δ, there will not be a lottery p such that
infv∈W∪{v} c(p�v) = c(p�v) < infv∈W c(p�v).
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(i) The set Ŵ is a continuous cautious expected utility representation of �.
(ii) If W ⊆ Unor is a cautious expected utility representation of �, then

co(Ŵ)⊆ co(W).
(iii) The set Ŵ is an expected multi-utility representation of �′, that is,

p�′ q ⇐⇒ Ep(v)≥ Eq(v) ∀v ∈ Ŵ �

Moreover, Ŵ is unique up to the closed convex hull.12

2.6. Parametric Sets of Utilities and Elicitation

In applied work, it is common to focus on parametric classes of utility func-
tions. In this subsection, we suggest two examples of parsimonious families of
utility functions that are compatible with a cautious expected utility represen-
tation. We then remark on the issue of how to elicit the set of utilities from a
finite data set.

The first example is the family of expo-power utility functions (Saha (1993)),
which generalizes both constant absolute and constant relative risk aversion,
given by

u(x)= 1 − exp
(−λxθ

)
with λ �= 0� θ �= 0� and λθ > 0�

This functional form has been applied in a variety of fields, such as finance, in-
tertemporal choices, and agriculture economics. Holt and Laury (2002) argue
that this functional form fits well experimental data that involve both low and
high stakes. The second example is the set of Pareto utility functions, given by

u(x)= 1 −
(

1 + x

γ

)−κ

with γ > 0 and κ > 0�

Ikefuji, Laeven, Magnus, and Muris (2013) show that a Pareto utility function
has some desirable properties.13

We conclude with a remark on the issue of elicitation. If one could observe
the certainty equivalents for all lotteries, then the whole preference relation
would be recovered and the set W identified (up to its uniqueness properties),
but this requires an infinite number of observations. With a finite data set,
one can approximate, or partially recover, the set W as follows. Note that if

12Evren (2014) characterizes (possibly incomplete) preference relations that satisfy indepen-
dence and a form of continuity that is stronger than ours. He obtains a normalized expected
multi-utility representation with a compact set W . To our knowledge, he was the first to study the
notion of uniqueness of this representation up to the closed convex hull (see his Theorem 2).

13If u is Pareto, then the coefficient of absolute risk aversion is − u′′(x)
u′(x) = κ+1

x+γ
, which is increasing

in κ and decreasing in γ. Therefore, for a large enough interval [w�b], if κu > κv and γu > γv ,
then u and v are not ranked in terms of risk aversion.
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a function v assigns to some lottery p a certainty equivalent smaller than the
one observed in the data, then v cannot belong to W . Therefore, by observing
the certainty equivalents of a finite number of lotteries, one could exclude a
set of possible utility functions and approximate the set W “from above.” The
set thus obtained would necessarily contain the “true” one, and as the number
of observations increases, it will shrink to coincide with W (or, more precisely,
with a version of W up to uniqueness). Such elicitation would be significantly
faster if, as is often the case in empirical work, one focuses on utility functions
that come from a specific parametric class.

3. CAUTIOUS EXPECTED UTILITY AND RISK ATTITUDES

In this section, we explore the connection between Theorem 1 and standard
definitions of risk attitude, and characterize the comparative notion of “more
risk averse than.” Throughout this section, we mainly focus on a “minimal”
representation Ŵ as in Theorem 2.

REMARK: If W is a continuous cautious expected utility representation of a
preference relation �, we denote by Ŵ a set of utilities as identified in The-
orem 2 (which is unique up to the closed convex hull). More formally, we can
define a correspondence T that maps each set W that is a continuous cautious
expected utility representation of some � to a class of subsets of Unor, T(W),
each element of which satisfies the properties of points (i)–(iii) of Theorem 2
and is denoted by Ŵ .

3.1. Characterization of Risk Attitudes

We adopt the following standard definition of risk aversion/risk seeking.

DEFINITION 2: We say that � is risk averse (resp., risk seeking) if p � q
(resp., q � p) whenever q is a mean preserving spread of p.

THEOREM 3: Let � be a binary relation that satisfies Weak Order, Continuity,
Weak Monotonicity, and Negative Certainty Independence. The following state-
ments are true:

(i) The relation � is risk averse if and only if each v ∈ Ŵ is concave.
(ii) The relation � is risk seeking if and only if each v ∈ Ŵ is convex.

Theorem 3 shows that the relationship found under expected utility between
the concavity/convexity of the utility function and risk attitude holds also for
the continuous cautious expected utility model—although it now involves all
utilities in the set Ŵ . In turn, this shows that our model is compatible with
many types of risk attitudes. For example, despite the presence of the certainty
effect, when all utilities are convex, the DM would be risk seeking.
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3.2. Comparative Risk Aversion

We now proceed to compare the risk attitudes of two individuals.

DEFINITION 3: Let �1 and �2 be two binary relations on Δ. We say that �1

is more risk averse than �2 if and only if for each p ∈ Δ and for each x ∈ [w�b],
p�1 δx �⇒ p �2 δx�

THEOREM 4: Let �1 and �2 be two binary relations with continuous cautious
expected utility representations, W1 and W2, respectively. The following statements
are equivalent:

(i) The binary relation �1 is more risk averse than �2.
(ii) Both W1 ∪W2 and W1 are continuous cautious expected utility represen-

tations of �1.
(iii) co(Ŵ1 ∪W2)= co(Ŵ1).

Theorem 4 states that DM1 is more risk averse than DM2 if and only if all
the utilities in W2 are redundant when added to W1.14,15 This result compounds
two different channels that lead one DM to be more risk averse than another.
The first is related to the curvatures of the functions in each set of utilities.
For example, if each v ∈W2 is a strictly increasing and strictly convex transfor-
mation of some v̂ ∈W1, then DM2 assigns a strictly higher certainty equivalent
than DM1 to any nondegenerate lottery p ∈ Δ (while the certain outcomes are,
by construction, treated similarly in both). In particular, no member of W2 will
be used in the representation corresponding to W1 ∪W2. The second channel
corresponds to comparing the size of the two sets: if W2 ⊆ W1, then for each
p ∈ Δ the certainty equivalent under W2 is weakly greater than that under W1,
implying that �1 is more risk averse than �2.

To distinguish between these two different channels and characterize the
behavioral underpinning of the second one, we focus on the notion of linear
core and its representation as in Theorem 2.

DEFINITION 4: Let �1 and �2 be two binary relations on Δ with correspond-
ing linear cores �′

1 and �′
2. We say that �1 is more indecisive than �2 if and

only if for each p�q ∈ Δ,

p�′
1 q �⇒ p�′

2 q�

Since we interpret the derived binary relation �′ as capturing the compar-
isons that the DM is confident in making, Definition 4 implies that DM1 is

14We thank Todd Sarver for suggesting point (iii) in Theorem 4.
15Note that if both �1 and �2 are expected utility preferences, then there are v1 and v2 such

that {v1} = W1 = Ŵ1, {v2} = W2 = Ŵ2, and points (ii) and (iii) in Theorem 4 are equivalent to v1

being a strictly increasing concave transformation of v2.
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more indecisive than DM2 if whenever DM1 can confidently declare p weakly
better than q, so does DM2. The following result characterizes this compara-
tive relation and links it to the comparative notion of risk aversion.

PROPOSITION 2: Let �1 and �2 be two binary relations that satisfy Weak Or-
der, Continuity, Weak Monotonicity, and Negative Certainty Independence. The
following statements are true:

(i) The binary relation �1 is more indecisive than �2 if and only if co(Ŵ2) ⊆
co(Ŵ1).

(ii) If �1 is more indecisive than �2, then �1 is more risk averse than �2.

4. CAUTIOUS COMPLETIONS OF INCOMPLETE PREFERENCES

Our analysis thus far has focused on the characterization of a complete pref-
erence relation that satisfies NCI (in addition to the other basic axioms). We
now show that it is also related to that of a “cautious” completion of incom-
plete preferences.

Consider a DM who has an incomplete preference relation over Δ. There
might be occasions on which the DM is asked to choose among lotteries she
cannot compare, and to do this she has to complete her preferences. Suppose
that the DM wants to do so by applying caution: when in doubt between a sure
outcome and a lottery, she opts for the sure outcome. Which preferences will
she obtain as a completion? This analysis parallels that of Gilboa, Maccheroni,
Marinacci, and Schmeidler (2010), who consider an environment with ambigu-
ity instead of risk.16,17

Since we study an incomplete preference relation, we require a slightly
stronger notion of continuity, called sequential continuity (which coincides
with our continuity axiom if the binary relation is complete and transitive).

AXIOM 5—Sequential Continuity: Let {pn}n∈N and {qn}n∈N be two sequences
in Δ. If pn → p, qn → q, and pn � qn for all n ∈N, then p � q.

In the rest of the section, we assume that �′ is a reflexive and transitive bi-
nary relation over Δ, which satisfies Sequential Continuity, Weak Monotonic-
ity, and Independence. We look for a cautious completion of �′, which is de-
fined as follows.

16There is one minor formal difference: while in Gilboa et al. (2010) both the incomplete
relation and its completion are primitives of the analysis, in our case, the primitive is simply
the incomplete preference relation over lotteries, and we study the properties of all possible
completions of this kind.

17Riella (2013) develops a more general treatment that encompasses the result in this section
and that in Gilboa et al. (2010); he shows that a combined model could be obtained starting from
a preference relation over acts that admits a multi-prior expected multi-utility representation, as
in Ok, Ortoleva, and Riella (2012) and Galaabaatar and Karni (2013), and constructing a cautious
completion.
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DEFINITION 5: Let �′ be a binary relation on Δ. We say that the binary re-
lation �̂ is a cautious completion of �′ if and only if the following statements
hold:

1. The relation �̂ satisfies Weak Order, Weak Monotonicity, and for each
p ∈ Δ, there exists x ∈ [w�b] such that p ∼̂ δx.

2. For each p�q ∈ Δ, if p�′ q, then p �̂ q.
3. For each p ∈ Δ and x ∈ [w�b], if p ��′ δx, then δx �̂ p.

Point 1 imposes few minimal requirements of rationality on �̂ and the ex-
istence of a certainty equivalent for each lottery p. (Weak Monotonicity will
imply that this certainty equivalent is unique.) In point 2, we assume that the
relation �̂ extends �′. Finally, point 3 requires that such a completion of �′ is
done with caution.

THEOREM 5: If �′ is a reflexive and transitive binary relation on Δ that satisfies
Sequential Continuity, Weak Monotonicity, and Independence, then �′ admits a
unique cautious completion �̂ and there exists a set W ⊆ Unor such that for all
p�q ∈ Δ,

p�′ q ⇐⇒ Ep(v)≥ Eq(v) ∀v ∈W

and

p �̂ q ⇐⇒ inf
v∈W

c(p�v)≥ inf
v∈W

c(q� v)�

Moreover, W is unique up to the closed convex hull.

Theorem 5 shows that, given a binary relation �′ that satisfies all the tenets
of expected utility except completeness, there always exists a unique cautious
completion �̂. Most importantly, such completion admits a cautious expected
utility representation, using the same set of utilities as in the expected multi-
utility representation of the original preference �′. This shows that the cau-
tious expected utility model could also represent the behavior of a subject who
might be unable to compare some of the available options and when asked to
extend her ranking, does so by being cautious. Together with Theorem 1, The-
orem 5 shows that this behavior is indistinguishable from that of a subject who
starts with a complete preference relation and satisfies Axioms 1–4.

Theorem 5 strengthens the link between our model and the maxmin ex-
pected utility model of Gilboa and Schmeidler (1989). Gilboa et al. (2010)
show that the latter could be derived as a completion of an incomplete pref-
erence relation over Anscombe–Aumann acts that satisfies the same assump-
tions as �′ (adapted to their domain), by applying a form of caution according
to which, when in doubt, the DM chooses a constant act. Similarly, here we de-
rive the cautious expected utility model by extending an incomplete preference
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over lotteries using a form of caution according to which, when in doubt, the
DM chooses a risk-free lottery.18

5. RELATED LITERATURE

Dillenberger (2010) introduces the NCI axiom and studies its implications
in dynamic settings. Under specific assumptions on preferences over two-stage
lotteries, he shows that NCI is a necessary and sufficient condition to a prop-
erty called “preference for one-shot resolution of uncertainty.” Dillenberger,
however, does not provide a utility representation for preferences that satisfy
NCI, as in Theorem 1.

Cerreia-Vioglio (2009) characterizes the class of continuous and complete
preference relations that satisfy convexity. Loosely speaking, Cerreia-Vioglio
shows that there exists a set W of normalized Bernoulli utility functions,
and a real function U on R × W , such that preferences are represented by
V (p) = infv∈W U(Ep(v)� v). Using this representation, Cerreia-Vioglio inter-
prets convexity as a behavioral property that captures a preference for hedging
that may arise in the face of uncertainty about the value of outcomes, future
tastes, and/or the degree of risk aversion. He suggests the choice of the min-
imal certainty equivalent as a criterion to resolve uncertainty about risk atti-
tudes and as a completion procedure.19 Since NCI implies convexity (see Sec-
tion 2.2), our model is a special case of his (from the representation, this can
be seen by setting U(Ep(v)� v) = v−1(Ep(v))= c(p�v)).

A popular generalization of expected utility is the rank dependent utility
(RDU) model of Quiggin (1982), also used within cumulative prospect theory
(Tversky and Kahneman (1992)). In this model, individuals weight probability
in a nonlinear way using a distortion function f : [0�1] → [0�1], which is strictly
increasing and onto.20 If f (p) = p, then RDU reduces to expected utility. If f
is convex, then larger weight is given to inferior outcomes, leading to a pes-
simistic probability distortion suitable to explain the Allais paradoxes. Apart
from the different interpretation of RDU compared to our cautious expected
utility representation, as discussed in Section 2.3, the two models are behav-

18The condition in Gilboa et al. (2010) is termed default to certainty; point 3 of Definition 5 is
the translation of this condition to the context of choice under risk.

19See also Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio (2011).
20If we order the prizes in the support of a finite lottery p, with x1 < x2 < · · · < xn, then the

functional form for RDU is

V (p) = u(xn)f
(
p(xn)

) +
n−1∑
i=1

u(xi)

[
f

(
n∑
j=i

p(xj)

)
− f

(
n∑

j=i+1

p(xj)

)]
�

where f : [0�1] → [0�1] is strictly increasing and onto, and u : [w�b] →R is increasing.
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iorally distinct: Dillenberger (2010) shows that RDU satisfies NCI only in the
limiting case of expected utility.21

Another popular class of continuous and monotone preferences is the one
introduced by Dekel (1986) and Chew (1989) based on the betweenness ax-
iom.22 Under this postulate, indifference curves in the Marschak–Machina tri-
angle are linear, but they are not necessarily parallel as in expected utility.
One prominent example of such preferences is Gul’s (1991) model of dis-
appointment aversion (denoted DA in Figure 2), which adds one parame-
ter, β ∈ (−1�∞), to expected utility. Artstein-Avidan and Dillenberger (2011)
show that Gul’s preferences satisfy NCI if and only if β ≥ 0; and Dillenberger
and Erol (2013) provide an example of a continuous, monotone, and complete
preference relation that satisfies NCI but not betweenness. Thus, preferences
in our class neither nest nor are nested in those that satisfy betweenness.

Figure 2 summarizes our discussion thus far.23

Maccheroni (2002) (see also Chatterjee and Krishna (2011)) studies the fol-
lowing model: there exists a set T of utilities over outcomes, such that pref-
erences are represented by V (p) = minv∈T Ep(v). Maccheroni’s interpretation
that “the most pessimist of [the DM] selves gets the upper hand over the oth-
ers,” is closely related to the interpretation of our functional form. In addition,
both models satisfy convexity. There are, however, two main differences be-
tween the two models. First, Maccheroni’s model cannot (and was not meant
to) address the certainty effect: since certainty equivalents are not used, also
degenerate lotteries have multiple evaluations. Second, in addition to convex-
ity, Maccheroni’s other key axiom, which requires independence when mixing
lotteries with the best possible outcome (b), is distinct from NCI.

Schmidt (1998) develops a model in which the value of any nondegenerate
lottery p is Ep(u), whereas the value of the degenerate lottery δx is v(x). The
certainty effect is captured by requiring v(x) > u(x) for all x. Schmidt’s model
violates both continuity and monotonicity, while we confine our attention to
preferences that satisfy both of these basic properties. In addition, his model
also violates NCI.24 Other discontinuous specifications of the certainty effect

21Bell and Fishburn (2003) show that expected utility is the only RDU with the property that
for each binary lottery p and x ∈ [w�b], p ∼ δx implies αp + (1 − α)δx ∼ δx. This property is
implied by NCI (see Section 2.2). Geometrically, it corresponds to the linear indifference curve
through the origin in any Marschak–Machina triangle (Figure 1 in Section 2.2).

22The betweenness axiom states that for each p�q ∈ Δ and λ ∈ (0�1), p � q (resp., p ∼ q)
implies p� λp+ (1 − λ)q � q (resp., p ∼ λp+ (1 − λ)q ∼ q).

23Chew and Epstein (1989) show that there is no intersection between RDU and betweenness
other than expected utility (see also Bell and Fishburn (2003)). Whether or not RDU satisfies
convexity depends on the curvature of the distortion function f ; in particular, concave f implies
convexity. In addition to disappointment aversion with negative β, an example of preferences
that satisfy betweenness but do not satisfy NCI is Chew’s (1983) model of weighted utility.

24For example, take u(x) = x and v(x) = 2x, and note that V (δ3) = 6 > 4 = V (δ2), but
V (δ2) = 4 > 2�5 = V (0�5δ3 + 0�5δ2). (The statement in Dillenberger and Erol (2013) that
Schmidt’s model satisfies NCI is incorrect.)
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FIGURE 2.—Cautious expected utility and other models.

include, for example, Gilboa (1988) and Jaffray (1988), which are models of
“expected utility with security level.”

Dean and Ortoleva (2014) present a model that, when restricted to prefer-
ences over lotteries, generalizes pessimistic RDU. In their model, the DM has
one utility function and a set of convex probability distortion functions; she
then evaluates each lottery using the most pessimistic of these distortions. The
exact relation between their model and ours remains an open question.

Machina (1982) studies a model with minimal restrictions imposed on pref-
erences apart from requiring them to be smooth (Fréchet differentiable). One
of the main behavioral assumptions proposed by Machina is Hypothesis II,
which implies that indifference curves in the Marschak–Machina triangle fan
out, that is, they become steeper as one moves in the northwest direction. The
steepest middle slope property (Section 2.2) implies that our model can ac-
commodate fanning out in the lower-right part of the triangle (from where
most evidence on Allais-type behavior had come), while global fanning out is
ruled out.

6. EXPERIMENTAL EVIDENCE

In this section, we discuss the experimental evidence pertaining to the two
Allais’ paradoxes—the common ratio and common consequence effects—and
more broadly the empirical regularities of preferences under risk. In light of
this evidence, we evaluate the fit of our model and that of the two most pop-
ular alternatives to expected utility, RDU and betweenness, which are also
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consistent with Allais-type behavior.25 Our discussion relies on the surveys in
Camerer (1995) and Starmer (2000), and on more recent findings.

The presence of Allais-type behavior when one alternative in the choice
set is risk-free is extensively documented (see Camerer (1995, Section C1)).
A natural question is whether violations of expected utility in these exper-
iments depend on the special nature of certainty or whether they would be
exhibited also when certainty is not involved. Some early evidence initially sug-
gested the latter (e.g., Kahneman and Tversky (1979) and MacCrimmon and
Larsson (1979); see Machina (1987) for a survey).26 A second wave of em-
pirical studies, however, provide evidence that certainty does matter. The re-
sults in Cohen and Jaffray (1988), Conlisk (1989), Camerer (1992), Sopher and
Gigliotti (1993), Harless and Camerer (1994), and Humphrey (2000) all indi-
cate that Allais-type violations of expected utility are much less frequent when
the safe option is moved away from certainty and, more generally, when only
nondegenerate lotteries over common outcomes are involved.27 This pattern is
documented as one of the key stylized facts of preferences under risk. Some
recent evidence even argues that non-expected utility behavior completely dis-
appears unless certainty is involved (see Andreoni and Harbaugh (2010) and
Andreoni and Sprenger (2010, 2012).28

The cautious expected utility model is compatible with more violations of ex-
pected utility as we approach the boundaries of the Marschak–Machina trian-
gle. Moreover, it implies that Allais-type violations cannot be more prominent
when a risk-free prospect is not involved than when it is. This is formalized in
the following proposition (the proof is an immediate implication of NCI and is
omitted).

PROPOSITION 3: Let � be a binary relation on Δ that satisfies Weak Or-
der, Continuity, Weak Monotonicity, and Negative Certainty Independence. Fix

25In reviewing the evidence related to the common ratio and common consequence effects, we
find it useful to discuss them together. For the purpose of our paper this is inconsequential, since
our model puts the exact same restrictions on behavior in both problems. Moreover, the two
phenomena are often discussed either interchangeably or jointly to emphasize specific issues;
for example, even though the term “certainty effect” was first referred to as a special case of
the common ratio effect, in more recent literature, it is typically understood as any violation of
expected utility resulting from experiments that include one lottery that is risk-free.

26For example, Kahneman and Tversky found that 86 percent of their subjects chose 0�9δ3000 +
0�1δ0 over 0�45δ6000 + 0�55δ0, while 73 percent chose 0�01δ6000 + 0�99δ0 over 0�02δ3000 + 0�98δ0.
This is an instance of the common ratio effect, since the ratio of the probabilities to receive 3000
and 6000 is the same in both problems (equals 0�9

0�45 = 0�02
0�01 ).

27For example, in Conlisk (1989) the fraction of expected utility violations drops from about
50 percent in the basic version that includes one degenerate lottery to about 32 percent in the
“displaced Allais version,” where each of the new prospects puts strictly positive probability on
all prizes.

28On the other hand, some studies found a “reverse” certainty effect, which is clearly incom-
patible with our model. See Wu, Zhang, and Abdellaoui (2005) and Blavatskyy (2010).
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x3 > x2 > x1 and for α�β�γ ∈ [0�1], consider the lotteries A = δx2 , B = αδx3 +
(1 − α)δx1 , C = βA+ (1 −β)δx1 , D = βB + (1 −β)δx1 , E = γC + (1 − γ)δx1 ,
and F = γD+ (1 − γ)δx1 . Then

C �D and E ≺ F �⇒ A � B�

In words, if we observe a common ratio violation for the pairs CD and EF ,
then we must also observe such violation for AB and EF , when A is a risk-free
lottery.

Note that without further assumptions, our model does not rule out the op-
posite of the common ratio effect away from certainty, as long as Continuity is
preserved (e.g., it permits D � C and F ≺ E, at least for small enough values
of β). This is also allowed by both RDU and betweenness; in their most general
forms, these models put no restrictions on the behaviors just discussed (for ex-
ample, they are compatible with fewer violations of expected utility away from
certainty and with the absence of reverse common ratio effect, but are consis-
tent with the opposite patterns as well).

Many studies investigated whether Allais’ results and the pattern of indif-
ference curves they suggest persist when constructed using different kind of
mixtures, for example, when computed in the upper part of the Marschak–
Machina triangle as opposed to the lower part (from where most early evidence
had come). A robust finding is that indifference curves in the triangle exhibit
mixed fanning: they become first steeper (fanning out) and then flatter (fanning
in) as we move in the northwest direction. In particular, global fanning out is
inconsistent with the available data.29 As we noted in Section 5, our model is
compatible with mixed fanning and rules out global fanning out. Betweenness
is compatible with both mixed fanning and fanning out. RDU rules out global
fanning out (see Röell (1987)).30

Another robust finding is that Allais-type behavior is significantly less fre-
quent when stakes are small rather than large.31 Our model is compatible with
this evidence: for instance, this would be the case if, as in Example 1, one of
the utility functions in W is the most risk averse for a range of outcomes below
a threshold.32 Models based on betweenness are also consistent with it. How-

29Chew and Waller (1986), Camerer (1989), Conlisk (1989), Battalio, Kagel, and Jiranyakul
(1990), Prelec (1990), Sopher and Gigliotti (1993), Wu (1994).

30RDU is compatible with many fanning patterns of indifference curves, but is inconsistent
with mixed fanning in the strict sense (see Wu and Gonzalez (1998)).

31Conlisk (1989), Camerer (1989), Burke, Carter, Gominiak, and Ohl (1996), Fan (2002), Huck
and Müller (2012), Agranov and Ortoleva (2014). Some of these studies also found that expected
utility violations are less prominent in experiments that include real rather than hypothetical
payoffs.

32In Example 1, u2 has a higher Arrow–Pratt coefficient of (absolute) risk aversion than u1 for
all outcomes below 1−α

β
. Therefore, when restricted to lotteries with support in [w� 1−α

β
], pref-

erences are expected utility with Bernoulli index u2, but they violate expected utility for larger
stakes.
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ever, this is not the case for RDU. As its name suggests, in that model only
the ranks of outcomes within the support of a lottery matter for the probability
distortion, not their sizes. Thus, the presence of Allais-type behavior should be
independent of the stakes.33

The behavioral patterns we have mentioned so far are documented for lot-
teries involving only positive outcomes (gains). As is well known, behavior may
be different when losses are involved (Camerer (1995)). For example, individ-
uals are typically risk averse with respect to gains, yet risk seeking with respect
to losses—the so-called reflection effect. Just like RDU or betweenness, our
model is not designed to distinguish between gains and losses. Yet it is consis-
tent with risk aversion over gains and risk loving over losses; for example, if
each v ∈ W is such that v is concave (resp., convex) for positive (resp., nega-
tive) outcomes. Some studies also document the opposite of the common ratio
effect for losses (Kahneman and Tversky (1979)). As we mentioned earlier,
our model, independently of the sign of the stakes, is inconsistent with the op-
posite of the certainty effect but can accommodate local violations (away from
certainty) of the common ratio effect.

With respect to their main behavioral underpinnings, a stylized fact is that
indifference curves are typically nonlinear, thus directly violating the between-
ness axiom.34 In addition, there is also evidence of frequent violations of
RDU’s key axiom, comonotonic/ordinal independence.35 (We discuss tests of
NCI in detail below.)

Overall, it appears that our model does at least as well as leading alternative
models in accommodating most prominent existing evidence. And it is based
on an axiom that captures the well documented certainty effect, instead of an-
cillary assumptions that are easily challenged by experiments, such as between-
ness or comonotonic/ordinal independence.

We conclude with two remarks. First, our model is permissive. For example,
it generalizes Gul’s (1991) model of disappointment aversion (with β > 0).
This comes from the fact that the NCI axiom captures the certainty effect but
regulates other aspects of behavior less. Some existing models, again such as
Gul (1991), may provide sharper predictions (e.g., imply more common ratio
violations away from certainty),36 but also rely on assumptions that have poor
empirical performance, such as betweenness. In this regard, our model is less

33RDU implies that if we detect an Allais-type violation of expected utility in some range of
prizes, for example, with x1 < x2 < x3, then similar violations of expected utility can be produced
in any range of prizes. That is, for any y1 < y3 there exists y2 ∈ (y1� y3) and a�b ∈ (0�1) such that
δy2 � aδy3 + (1 − a)δy1 but bδy2 + (1 − b)δy1 ≺ abδy3 + (1 − ab)δy1 .

34Chew and Waller (1986), Bernasconi (1994), Camerer and Ho (1994), Prelec (1990).
35Wu (1994), Wakker, Erev, and Weber (1994).
36Formally, in Gul’s model (with β > 0), Proposition 3 can be strengthen: under the same

assumptions, we must have that C � D and E ≺ F imply A′
λ � B′

λ for all λ ∈ [0�1], where A′
λ =

λA+ (1 − λ)C and B′
λ = λB + (1 − λ)D.
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restrictive—and thus has less predictive power—than some existing alterna-
tives, but relies on a small set of assumptions and provides a flexible framework
to applied researchers. Nonetheless, there are instances in which our model
has specific behavioral predictions that are more restrictive than those of ex-
isting ones (e.g., RDU). In the case of behavior at or away from certainty as
stated in Proposition 3, for example, this additional restriction is in line with
the experimental data.

As a second remark, we note that the cautious expected utility model has
additional behavioral implications that may or not find empirical support and
that have not been subject to similar scrutiny yet. In general, while consistent
with many of the findings on the certainty effect, to our knowledge no com-
prehensive tests of NCI have been conducted thus far. Due to the simplicity of
the axiom, such tests should be easy to implement, and could focus either on
testing the axiom itself or on testing some of its implications when combined
with the other three axioms. For example, while most of the evidence on the
certainty effect we surveyed above is based on lotteries with at most three out-
comes, NCI directly suggests that the phenomenon should be invariant to the
number of prizes. In addition, NCI implies that an individual should be indif-
ferent to any mixing between a lottery and its certainty equivalent (recall that
the indifference curve through the middle outcome in any Marschak–Machina
triangle must be linear). Last, NCI implies (weak) convexity of preferences.
Convexity has been tested experimentally, albeit possibly with smaller scrutiny.
The existing evidence is mixed: while the experimental papers that document
violations of betweenness found deviations in both directions (that is, either
preference or aversion to mixing), both Sopher and Narramore (2000) and
Dwenger, Kübler, and Weizsäcker (2013) find explicit evidence in support of
convexity.37

APPENDIX A: PRELIMINARY RESULTS

We begin by proving some preliminary results that will be useful for the
proofs of the main results in the text. In the sequel, we denote by C([w�b]) the
set of all real valued continuous functions on [w�b]. Unless otherwise speci-
fied, we endow C([w�b]) with the topology induced by the supnorm. We de-
note by Δ = Δ([w�b]) the set of all Borel probability measures endowed with
the topology of weak convergence. We denote by Δ0 the subset of Δ that con-
tains only the elements with finite support. Since [w�b] is closed and bounded,
Δ is compact with respect to this topology and Δ0 is dense in Δ. Given a binary
relation � on Δ, we define an auxiliary binary relation �′ on Δ by

p�′ q ⇐⇒ λp+ (1 − λ)r � λq+ (1 − λ)r ∀λ ∈ (0�1]�∀r ∈ Δ�

37Convexity is another dimension in which our model differs from a popular version of RDU
used to address Allais-type behavior. In particular, RDU with a convex distortion f displays aver-
sion to mixing (i.e., lower, and not upper, contour sets are convex).
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LEMMA 1: Let � be a binary relation on Δ that satisfies Weak Order. The fol-
lowing statements are true:

1. The relation � satisfies Negative Certainty Independence if and only if for
each p ∈ Δ and for each x ∈ [w�b],

p� δx �⇒ p�′ δx (equivalently, p ��′ δx �⇒ δx � p)�

2. If � also satisfies Negative Certainty Independence, then � satisfies Weak
Monotonicity if and only if for each x� y ∈ [w�b],

x≥ y ⇐⇒ δx �′ δy�

that is, �′ satisfies Weak Monotonicity.

The proof of this lemma follows from the definition of �′.
We define

Vin = {
v ∈C

([w�b]) : v is increasing
}
�

Vinco = {
v ∈C

([w�b]) : v is increasing and concave
}
�

U = Vs-in = {
v ∈C

([w�b]) : v is strictly increasing
}
�

Unor = {
v ∈C

([w�b]) : v(b)− 1 = 0 = v(w)
} ∩ Vs-in�

Consider a binary relation �∗ on Δ such that

p�∗ q ⇐⇒ Ep(v)≥ Eq(v) ∀v ∈W�(2)

where W is a subset of C([w�b]). Define Wmax as the set of all functions v ∈
C([w�b]) such that p �∗ q implies Ep(v) ≥ Eq(v). Define also Wmax−nor as the
set of all functions v ∈ Unor such that p�∗ q implies Ep(v) ≥ Eq(v). Clearly, we
have that Wmax−nor =Wmax ∩ Unor and Wmax−nor�W ⊆Wmax.

PROPOSITION 4: Let �∗ be a binary relation represented as in (2) and such that
x≥ y if and only if δx �∗ δy . The following statements are true:

1. Wmax and Wmax−nor are convex, and Wmax is closed.
2. ∅ �=Wmax−nor.
3. Wmax ⊆ Vin, ∅ �=Wmax ∩ Vs-in, and cl(Wmax ∩ Vs-in)=Wmax.
4. p �∗ q if and only if Ep(v) ≥ Eq(v) for each v ∈Wmax−nor.
5. If W is a convex subset of Unor that satisfies (2) then cl(W)= cl(Wmax−nor).

PROOF: 1. Consider v1� v2 ∈ Wmax−nor (resp., v1� v2 ∈ Wmax) and λ ∈ (0�1).
Since both functions are continuous, strictly increasing, and normalized (resp.,
continuous), it follows that λv1 +(1−λ)v2 is continuous, strictly increasing, and
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normalized (resp., continuous). Since v1� v2 ∈Wmax−nor (resp., v1� v2 ∈Wmax), if
p �∗ q, then Ep(v1)≥ Eq(v1) and Ep(v2)≥ Eq(v2). This implies that

Ep

(
λv1 + (1 − λ)v2

) = λEp(v1)+ (1 − λ)Ep(v2)

≥ λEq(v1)+ (1 − λ)Eq(v2)

= Eq

(
λv1 + (1 − λ)v2

)
�

proving that Wmax−nor (resp., Wmax) is convex. Next, consider {vn}n∈N ⊆ Wmax

such that vn → v. It is immediate to see that v is continuous. Moreover, if
p �∗ q, then Ep(vn) ≥ Eq(vn) for all n ∈ N. By passing to the limit, we obtain
that Ep(v)≥ Eq(v), that is, that v ∈Wmax; hence, Wmax is closed.

2. By Dubra, Maccheroni, and Ok (2004, Proposition 3), it follows that there
exists v̂ ∈C([w�b]) such that

p∼∗ q �⇒ Ep(v̂) = Eq(v̂)

and

p�∗ q �⇒ Ep(v̂) > Eq(v̂)�

By assumption, we have that x ≥ y if and only if δx �∗ δy . This implies that
x ≥ y if and only if v̂(x) ≥ v̂(y), proving that v̂ is strictly increasing. Since v̂
is strictly increasing, by taking a positive and affine transformation, v̂ can be
chosen to be such that v̂(w) = 0 = 1 − v̂(b). It is immediate to see that v̂ ∈
Wmax−nor.

3. By definition of Wmax, we have that if p �∗ q, then Ep(v) ≥ Eq(v) for all
v ∈Wmax. On the other hand, by assumption and since W ⊆Wmax, we have that
if Ep(v) ≥ Eq(v) for all v ∈ Wmax, then Ep(v) ≥ Eq(v) for all v ∈ W , which, in
turn, implies that p�∗ q. In other words, Wmax satisfies (2) for �∗. By assump-
tion, we can thus conclude that

x≥ y �⇒ δx �∗ δy

�⇒ Eδx(v) ≥ Eδy (v) ∀v ∈Wmax

�⇒ v(x) ≥ v(y) ∀v ∈Wmax�

proving that Wmax ⊆ Vin. By point 2 and since Wmax−nor ⊆ Wmax, we have that
∅ �= Wmax ∩ Vs-in. Since Wmax ∩ Vs-in ⊆ Wmax and the latter is closed, we have
that cl(Wmax ∩ Vs-in) ⊆ Wmax. On the other hand, consider v̇ ∈ Wmax ∩ Vs-in and
v ∈ Wmax. Define {vn}n∈N by vn = 1

n
v̇ + (1 − 1

n
)v for all n ∈ N. Since v� v̇ ∈ Wmax

and the latter set is convex, we have that {vn}n∈N ⊆ Wmax. Since v̇ is strictly
increasing and v is increasing, vn is strictly increasing for all n ∈ N, proving that
{vn}n∈N ⊆Wmax ∩Vs-in. Since vn → v, it follows that v ∈ cl(Wmax ∩Vs-in), proving
that Wmax ⊆ cl(Wmax ∩ Vs-in) and thus the opposite inclusion.
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4. By assumption, we have that there exists a subset W of C([w�b]) such
that p �∗ q if and only if Ep(v) ≥ Eq(v) for all v ∈W . By point 3 and its proof,
we can replace W first with Wmax and then with Wmax ∩ Vs-in. Consider v ∈
Wmax ∩Vs-in. Since v is strictly increasing, there exist (unique) γ1 > 0 and γ2 ∈R

such that v = γ1v+γ2 is continuous, strictly increasing, and satisfies v(w)= 0 =
1 − v(b). For each v ∈ Wmax ∩ Vs-in, it is immediate to see that Ep(v) ≥ Eq(v)

if and only if Ep(v) ≥ Eq(v). Define W = {v : v ∈ Wmax ∩ Vs-in}. Notice that
W ⊆ Unor. From the previous part, we can conclude that p �∗ q if and only if
Ep(v) ≥ Eq(v) for all v ∈W . It is also immediate to see that W ⊆Wmax−nor. By
construction of Wmax−nor, notice that

p�∗ q �⇒ Ep(v) ≥ Eq(v) ∀v ∈Wmax−nor�

On the other hand, since W ⊆Wmax−nor, we have that

Ep(v)≥ Eq(v) ∀v ∈Wmax−nor �⇒ Ep(v) ≥ Eq(v)� ∀v ∈W
�⇒ p �∗ q�

We can conclude that Wmax−nor represents �∗.
5. Consider v ∈ W . By assumption, v is a strictly increasing and continuous

function on [w�b] such that v(w) = 0 = 1 − v(b). Moreover, since W satisfies
(2), it follows that p �∗ q implies that Ep(v) ≥ Eq(v). This implies that v ∈
Wmax−nor. We can conclude that W ⊆ Wmax−nor, hence, cl(W) ⊆ cl(Wmax−nor).
To prove the opposite inclusion, we argue by contradiction. Assume that there
exists v ∈ cl(Wmax−nor) \ cl(W). Since v ∈ cl(Wmax−nor), we have that v(w) =
0 = 1 − v(b). By Dubra, Maccheroni, and Ok (2004, pp. 123–124) and since
both W and Wmax−nor satisfy (2), we also have that

cl
(
cone(W)+ {θ1[w�b]}θ∈R

) = cl
(
cone(Wmax−nor)+ {θ1[w�b]}θ∈R

)
�

We can conclude that v ∈ cl(cone(W)+ {θ1[w�b]}θ∈R). Observe that there exists
{v̂n}n∈N ⊆ cone(W) + {θ1[w�b]}θ∈R such that v̂n → v. By construction and since
W is convex, there exist {λn}n∈N ⊆ [0�∞), {vn}n∈N ⊆ W , and {θn}n∈N ⊆ R such
that v̂n = λnvn + θn1[w�b] for all n ∈ N. It follows that

0 = v(w)= lim
n
v̂n(w) = lim

n

{
λnvn(w)+ θn1[w�b](w)

} = lim
n
θn

and

1 = v(b)= lim
n
v̂n(b) = lim

n

{
λnvn(b)+ θn1[w�b](b)

} = lim
n

{λn + θn}�

This implies that limn θn = 0 = 1 − limn λn. Without loss of generality, we can
thus assume that {λn}n∈N is bounded away from zero, that is, that there exists
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ε > 0 such that λn ≥ ε > 0 for all n ∈ N. Since {θn}n∈N and {v̂n}n∈N are both
convergent, both sequences are bounded, that is, there exists k> 0 such that

‖v̂n‖ ≤ k and |θn| ≤ k ∀n ∈ N�

It follows that

ε‖vn‖ ≤ λn‖vn‖ = ‖λnvn‖ = ‖λnvn + θn1[w�b] − θn1[w�b]‖
≤ ‖λnvn + θn1[w�b]‖ + ‖−θn1[w�b]‖
≤ ‖λnvn + θn1[w�b]‖ + |θn|
≤ ‖v̂n‖ + |θn| ≤ 2k ∀n ∈ N�

that is, ‖vn‖ ≤ 2k
ε

for all n ∈ N. We can conclude that

‖v− vn‖ = ‖v − v̂n + v̂n − vn‖ ≤ ‖v − v̂n‖ + ‖v̂n − vn‖
= ‖v − v̂n‖ + ‖λnvn + θn1[w�b] − vn‖
≤ ‖v − v̂n‖ + |λn − 1|‖vn‖ + |θn|
≤ ‖v − v̂n‖ + |λn − 1|2k

ε
+ |θn| ∀n ∈N�

Passing to the limit, it follows that vn → v, that is, v ∈ cl(W), a contradic-
tion. Q.E.D.

We next provide a characterization of �′ that is due to Cerreia-Vioglio
(2009). Here, it is further specialized to the particular case where � satisfies
Weak Monotonicity and NCI in addition to Weak Order and Continuity. Be-
fore proving the statement, we need to introduce a piece of terminology. We
will say that �′′ is an integral stochastic order if and only if there exists a set
W ′′ ⊆ C([w�b]) such that

p�′′ q ⇐⇒ Ep(v)≥ Eq(v) ∀v ∈W ′′�

PROPOSITION 5: Let � be a binary relation on Δ that satisfies Weak Order,
Continuity, Weak Monotonicity, and Negative Certainty Independence. The fol-
lowing statements are true:

(a) There exists a set W ⊆ Unor such that p �′ q if and only if Ep(v) ≥ Eq(v)
for all v ∈W .

(b) For each p�q ∈ Δ if p �′ q, then p� q.
(c) If �′′ is an integral stochastic order that satisfies (b), then p �′′ q implies

p �′ q.
(d) If �′′ is an integral stochastic order that satisfies (b) and such that W ′′ can

be chosen to be a subset of Unor, then co(W)⊆ co(W ′′).
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PROOF: Part (a). By Cerreia-Vioglio (2009, Proposition 22), there exists a
set W ⊆ C([w�b]) such that p �′ q if and only if Ep(v) ≥ Eq(v) for all v ∈ W .
By Lemma 1, we also have that x ≥ y if and only if δx �′ δy . By point 4 of
Proposition 4, if �∗ = �′, then W can be chosen to be Wmax−nor.

The statements of parts (b), (c), and (d) follow from Cerreia-Vioglio (2009,
Proposition 22 and Lemma 35). Q.E.D.

The next proposition clarifies the relationship between our assumption of
Weak Monotonicity and first order stochastic dominance. Given p�q ∈ Δ, we
write p �FSD q if and only if p dominates q with respect to first order stochastic
dominance.

PROPOSITION 6: If � is a binary relation on Δ that satisfies Weak Order, Con-
tinuity, Weak Monotonicity, and Negative Certainty Independence, then

p�FSD q �⇒ p� q�

PROOF: By Proposition 5, there exists W ⊆ Unor such that

p�′ q ⇐⇒ Ep(v)≥ Eq(v) ∀v ∈W �

By Proposition 5 and since W ⊆ Unor ⊆ Vin, it follows that

p�FSD q �⇒ Ep(v)≥ Eq(v) ∀v ∈ Vin

�⇒ Ep(v)≥ Eq(v) ∀v ∈W
�⇒ p �′ q �⇒ p� q�

proving the statement. Q.E.D.

APPENDIX B: PROOFS OF THE RESULTS IN THE TEXT

PROOF OF THEOREM 1: Before starting, we point out that in proving (i)
implies (ii), we will prove the existence of a continuous cautious expected utility
representation W that is convex and normalized, that is, a subset of Unor. This
will turn out to be useful in the proofs of other results in this section. The
normalization of W will play no role in proving (ii) implies (i).

Part (i) implies (ii). We proceed by steps.

STEP 1: There exists a continuous certainty equivalent utility function V :
Δ→ R.
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PROOF: Since � satisfies Weak Order and Continuity, there exists a contin-
uous function V : Δ→ R such that V (p)≥ V (q) if and only if p� q. By Weak
Monotonicity, we have that

x≥ y ⇐⇒ δx � δy ⇐⇒ V (δx)≥ V (δy)�(3)

Next, observe that δb �FSD q �FSD δw for all q ∈ Δ. By Proposition 6 and since
� satisfies Weak Order, Continuity, Weak Monotonicity, and NCI, this implies
that

δb � q � δw ∀q ∈ Δ�(4)

Consider a generic q ∈ Δ and the sets

{δx : δx � q} = {p ∈ Δ : p � q} ∩ {δx}x∈[w�b]

and

{δx : q � δx} = {p ∈ Δ : q � p} ∩ {δx}x∈[w�b]�

By (4), Continuity, and Aliprantis and Border (2005, Theorem 15.8), both sets
are nonempty and closed. Since � satisfies Weak Order, it follows that the
sets {

x ∈ [w�b] : δx � q
}

and
{
x ∈ [w�b] : q � δx

}
are nonempty and closed, and their union coincides with [w�b]. Since [w�b]
is connected, there exists an element xq in their intersection. In other
words, there exists xq ∈ [w�b] such that δxq ∼ q. Since q was chosen to be
generic, and by (3) and (4), such an element is unique and we further have
that

V (δb) ≥ V (q)= V (δxq)= V (q)≥ V (δw) ∀q ∈ Δ�(5)

Next, define f : [w�b] → R by f (x) = V (δx) for all x ∈ [w�b]. By (3), Ali-
prantis and Border (2005, Theorem 15.8), and (5), f is strictly increasing,
continuous, and such that f ([w�b]) = V (Δ). It follows that V : Δ → R de-
fined by u = f−1 ◦ V is a well defined continuous function such that p � q
if and only if V (p) ≥ V (q) and V (δx) = x for all x ∈ [w�b], proving the state-
ment. Q.E.D.

STEP 2: The binary relation �′ is represented by a set W ⊆ Unor, that is,

p�′ q ⇐⇒ c(p�v)≥ c(q� v) ∀v ∈W �(6)
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PROOF: This step follows by point (a) of Proposition 5. Recall that W can
be chosen to be Wmax−nor for �′. Q.E.D.

STEP 3: For each p ∈ Δ, we have that infv∈W c(p�v) ∈ [w�b].
PROOF: Fix p ∈ Δ. By construction, we have that b ≥ c(p�v) ≥ w for all

v ∈W . It follows that c = infv∈W c(p�v) is a real number in [w�b]. Q.E.D.

STEP 4: For each p ∈ Δ, we have that

V (p) ≤ inf
v∈W

c(p�v)�

PROOF: Fix p ∈ Δ. By Step 3, c = infv∈W c(p�v) is a real number in [w�b].
Since V (Δ)= [w�b], if c = b, then we have that V (p)≤ b= c. Otherwise, pick
d such that b > d > c. Since d > c, we have that there exists ṽ ∈W such that

c(p� ṽ) < d = c(δd� ṽ)�

By Step 2, it follows that p ��′ δd . By Lemma 1, this implies that δd � p, that is,
V (p) < V (δd) = d. Since d was chosen to be generic and strictly greater than
c, we have that V (p)≤ c, proving the statement. Q.E.D.

STEP 5: For each p ∈ Δ, we have that

V (p) ≥ inf
v∈W

c(p�v)�

PROOF: Fix p ∈ Δ. By Step 3, c = infv∈W c(p�v) is a real number in [w�b].
By construction, we have that

c(p�v)≥ c = c(δc� v) ∀v ∈W �

By Step 2, it follows that p �′ δc . By Proposition 5 point (b), this implies that
p� δc , that is, V (p)≥ V (δc)= c, proving the statement. Q.E.D.

The main implication follows from Steps 1, 2, 4, and 5.

Part (ii) implies (i). Assume there exists a set W ⊆ U such that V : Δ → R,
defined by

V (p) = inf
v∈W

c(p�v) ∀p ∈ Δ�

is a continuous utility function for �. Since � is represented by a continuous
utility function, it follows that it satisfies Weak Order and Continuity. By con-
struction, it is also immediate to see that V (δx) = x for all x ∈ [w�b]. In light
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of this fact, Weak Monotonicity follows immediately. Finally, consider p ∈ Δ
and x ∈ [w�b]. Assume that p � δx. It follows that for each λ ∈ [0�1] and for
each q ∈ Δ,

c(p�v)≥ V (p) ≥ V (δx) = x= c(δx� v) ∀v ∈W
�⇒ Ep(v)≥ Eδx(v) ∀v ∈W
�⇒ Eλp+(1−λ)q(v) ≥ Eλδx+(1−λ)q(v) ∀v ∈W
�⇒ c

(
λp+ (1 − λ)q�v

) ≥ c
(
λδx + (1 − λ)q�v

) ∀v ∈W
�⇒ V

(
λp+ (1 − λ)q

) ≥ V
(
λδx + (1 − λ)q

)
�⇒ λp+ (1 − λ)q � λδx + (1 − λ)q�

proving that � satisfies NCI. Q.E.D.

PROOF OF PROPOSITION 1: Consider W and W ′ in Unor such that co(W) =
co(W ′). Notice first that if both W and W ′ are convex, the proposition follows
trivially. To prove the proposition, it will therefore suffice to show that for each
W ⊆ Unor, we have that

inf
v∈W

c(p�v)= inf
v∈co(W)

c(p�v) ∀p ∈ Δ�

Consider p ∈ Δ. It is immediate to see that

inf
v∈W

c(p�v)≥ inf
v∈co(W)

c(p�v)�

Conversely, consider v ∈ co(W). It follows that there exist {vi}ni=1 ⊆ W and
{λi}ni=1 ⊆ [0�1] such that

∑n

i=1 λi = 1 and
∑n

i=1 λivi = v. Define x ∈ [w�b] and
{xi}ni=1 ⊆ [w�b] by x = c(p�v) and xi = c(p�vi) for all i ∈ {1� � � � � n}. By contra-
diction, assume that x < mini∈{1�����n} xi. Since {vi}ni=1 ⊆W ⊆ Vs-in, we have that

Ep(v) = Ep

(
n∑

i=1

λivi

)
=

n∑
i=1

λiEp(vi)

=
n∑

i=1

λivi(xi) >

n∑
i=1

λivi(x)= v(x)�

that is, x= c(p�v) > x, a contradiction. This implies that

c(p�v)= x≥ min
i∈{1�����n}

xi = min
i∈{1�����n}

c(p�vi)≥ inf
v∈W

c(p�v)�

Since v was chosen to be generic in co(W), we can conclude that

c(p�v)≥ inf
v∈W

c(p�v) ∀v ∈ co(W)�
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proving that infv∈W c(p�v) ≤ infv∈co(W) c(p�v) and thus proving the state-
ment. Q.E.D.

PROOF OF THEOREM 2: By the proof of Theorem 1 (Steps 1, 2, 4, and 5), we
have that there exists a set Ŵ ⊆ Unor such that

p�′ q ⇐⇒ Ep(v)≥ Eq(v) ∀v ∈ Ŵ(7)

and such that V : Δ→ R, defined by

V (p) = inf
v∈Ŵ

c(p�v) ∀p ∈ Δ�(8)

is a continuous utility function for �. This proves points (i) and (iii). Next
consider a subset W of Unor such that the function V : Δ → R defined by
V (p)= infv∈W c(p�v) for all p ∈ Δ represents �. Define �′′ by

p�′′ q ⇐⇒ Ep(v)≥ Eq(v) ∀v ∈W �

It is immediate to see that if p �′′ q, then p� q. By point (d) of Proposition 5,
this implies that co(Ŵ)⊆ co(W), proving point (ii).

Finally, consider two sets Ŵ1 and Ŵ2 in Unor that satisfy (7) and (8). By point
5 of Proposition 4, it follows that co(Ŵ1)= co(Ŵ2). Q.E.D.

PROOF OF THEOREM 3: We just prove point (i) since point (ii) follows by an
analogous argument. Given p ∈ Δ, we denote by e(p) its expected value. We
say that p �MPS q if and only if q is a mean preserving spread of p.38 Recall
that � is risk averse if and only if p �MPS q implies p � q. Assume that � is
risk averse. Let p�q ∈ Δ0.39 Since Δ0 is dense in Δ and � satisfies Weak Order
and Continuity, we have that

p�MPS q

�⇒ λp+ (1 − λ)r �MPS λq+ (1 − λ)r ∀λ ∈ (0�1]�∀r ∈ Δ0

38Recall that, by Rothschild and Stiglitz (1970), if p and q are elements of Δ0 and q is a mean
preserving spread of p, then p and q have the same mean and they give the same probability to
each point in their support with the exception of four ordered points x1 < x2 < x3 < x4. There
the following relations hold:

q(x1)−p(x1) = p(x2)− q(x2)≥ 0

and

q(x4)−p(x4) = p(x3)− q(x3)≥ 0�

39Recall that Δ0 is the subset of Δ that contains just the elements with finite support.
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�⇒ λp+ (1 − λ)r � λq+ (1 − λ)r ∀λ ∈ (0�1]�∀r ∈ Δ0

�⇒ λp+ (1 − λ)r � λq+ (1 − λ)r ∀λ ∈ (0�1]�∀r ∈ Δ

�⇒ p�′ q�

This implies that

p�MPS q �⇒ p�′ q �⇒ Ep(v)≥ Eq(v) ∀v ∈ Ŵ �

We can conclude that each v in Ŵ is concave. For the other direction, assume
that each v in Ŵ is concave. Since Ŵ ⊆ Vinco, we have that

p�MPS q �⇒ e(p)= e(q) and Ep(v)≥ Eq(v) ∀v ∈ Vinco

�⇒ Ep(v) ≥ Eq(v) ∀v ∈ Ŵ
�⇒ p �′ q �⇒ p � q�

proving that � is risk averse. Q.E.D.

PROOF OF THEOREM 4: Before proceeding, we make a few remarks. Fix
i ∈ {1�2}. By the proof of Theorem 1 and since �i satisfies Weak Order, Conti-
nuity, Weak Monotonicity, and NCI, it follows that W i

max−nor for �′
i constitutes

a continuous cautious expected utility representation of �i. Since W i
max−nor is

convex, if Ŵi is chosen as in Theorem 2, then we have that co(Ŵi) coincides
with the closure of W i

max−nor. Also recall that for each p ∈ Δ, we denote by xi
p

the element in [w�b] such that p∼i δxip
. We also have that Vi : Δ→R, defined

by

Vi(p)= inf
v∈Wi

max−nor

c(p�v)= inf
v∈Ŵi

c(p�v)= inf
v∈Wi

c(p�v) ∀p ∈ Δ�

represents �i, yielding that xi
p = Vi(p).

Part (i) implies (ii) and (i) implies (iii). Since �1 is more risk averse than
�2, we have that p ∼1 δx1

p
implies p �2 δx1

p
. Since �2 satisfies Weak Order and

Weak Monotonicity, it follows that x2
p ≥ x1

p for all p ∈ Δ. This implies that

V1(p)= min
{
V1(p)�V2(p)

} = inf
v∈W1∪W2

c(p�v) ∀p ∈ Δ�

that is, W1 ∪ W2 is a continuous cautious expected utility representation of
�1. By the remark in Section 3, it follows that Ŵ1 ∪W2 is also a continuous
cautious expected utility representation of �1. By the initial part of the proof,
we can conclude that co(Ŵ1)= cl(W1

max−nor)= co(Ŵ1 ∪W2).
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Part (iii) implies (i). Since co(Ŵ1) = cl(W1
max−nor) = co(Ŵ1 ∪W2), it follows

that

V1(p) = inf
v∈Ŵ1

c(p�v)= inf
v∈Ŵ1∪W2

c(p�v)

= inf
v∈W1∪W2

c(p�v)= min
{
V1(p)�V2(p)

} ≤ V2(p) ∀p ∈ Δ�

proving that x2
p ≥ x1

p for all p ∈ Δ. It follows that �1 is more risk averse than �2.
Part (ii) implies (i). Since W1 ∪W2 is a continuous cautious expected utility

representation of �1, it follows that

V1(p)= inf
v∈W1∪W2

c(p�v)≤ inf
v∈W2

c(p�v)≤ V2(p) ∀p ∈ Δ�

proving that x2
p ≥ x1

p for all p ∈ Δ. It follows that �1 is more risk averse
than �2. Q.E.D.

PROOF OF PROPOSITION 2: Part (i). We first prove necessity. By Theorem 2
and since �1 and �2 satisfy Weak Order, Continuity, Weak Monotonicity, and
NCI, we have that

p�′
i q ⇐⇒ Ep(v) ≥ Eq(v) ∀v ∈ Ŵi(9)

⇐⇒ Ep(v) ≥ Eq(v) ∀v ∈ co(Ŵi)�

By Proposition 5 point (b) and since �1 is more indecisive than �2, we have
that

p�′
1 q �⇒ p�′

2 q �⇒ p�2 q�

By Proposition 5 point (d) and (9), we can conclude that co(Ŵ2) ⊆ co(Ŵ1).
We next prove sufficiency. By (9) and since co(Ŵ2) ⊆ co(Ŵ1), we have that

p�′
1 q �⇒ Ep(v) ≥ Eq(v) ∀v ∈ co(Ŵ1)

�⇒ Ep(v) ≥ Eq(v) ∀v ∈ co(Ŵ2)

�⇒ p �′
2 q�

proving point (i).
Part (ii). By (9) and Proposition 4, we have that co(Ŵi) = cl(W i

max−nor) for
i ∈ {1�2}. Since �1 is more indecisive than �2, it follows that cl(W2

max−nor) ⊆
cl(W1

max−nor). By definition of W1
max−nor and W2

max−nor, it follows that W2
max−nor ⊆

W1
max−nor. By the proof of Theorem 1, this implies that

V1(p)= inf
v∈W1

max−nor

c(p�v)≤ inf
v∈W2

max−nor

c(p�v)= V2(p) ∀p ∈ Δ�
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Since each Vi is a continuous certainty equivalent utility function, it follows that
�1 is more risk averse than �2. Q.E.D.

PROOF OF THEOREM 5: Let �′ be a reflexive and transitive binary relation
on Δ that satisfies Sequential Continuity, Weak Monotonicity, and Indepen-
dence. We first prove the existence of a cautious completion. In doing this, we
show that this completion has a cautious expected utility representation. By
Dubra, Maccheroni, and Ok (2004), there exists a set W ⊆ C([w�b]) such that
p �′ q if and only if Ep(v) ≥ Eq(v) for all v ∈W . By Proposition 4, without loss
of generality, we can assume that W ⊆ Unor ⊆ U .

Next define the binary relation �̂ as

p �̂ q ⇐⇒ inf
v∈W

c(p�v)≥ inf
v∈W

c(q� v)�(10)

Notice that �̂ is well defined, it satisfies Weak Order and Weak Monotonicity,
and clearly for each p ∈ Δ, there exists x ∈ [w�b] such that p ∼̂ δx. Next, we
show �̂ is a completion of �′. Since each v ∈ W is strictly increasing, we have
that

p�′ q ⇐⇒ c(p�v)≥ c(q� v) ∀v ∈W �(11)

This implies that if p�′ q, then infv∈W c(p�v)≥ infv∈W c(q� v), that is, if p �′ q,
then p �̂ q. Finally, let x be an element of [w�b] and p ∈ Δ such that p ��′ δx.
By (11), it follows that there exists ṽ ∈ W such that c(δx� ṽ) = x > c(p� ṽ). By
(10), this implies that infv∈W c(δx� v) = x > infv∈W c(p�v), hence δx �̂ p. This
concludes the proof of the existence of a cautious completion.

We are left with proving uniqueness. Let �◦ be a cautious completion of �′.
By point 1 of Definition 5, �◦ satisfies Weak Order and Weak Monotonic-
ity, and for each p ∈ Δ, there exists x ∈ [w�b] such that p ∼◦ δx. This im-
plies that there exists V : Δ → R such that V represents �◦ and V (δx) = x
for all x ∈ [w�b]. Moreover, we have that V (Δ) = [w�b]. Let p ∈ Δ. Define
c = infv∈W c(p�v) ∈ [w�b]. If c = b, then V (p) ≤ b = c = infv∈W c(p�v). If c <
b, then for each d ∈ (c�b) there exists ṽ ∈ W such that c(δd� ṽ) = d > c(p� ṽ),
yielding that p ��′ δd . By point 3 of Definition 5, we can conclude that δd �◦ p,
that is, d = V (δd) > V (p). Since d was arbitrarily chosen in (c�b), it follows
that V (p) ≤ c = infv∈W c(p�v). Finally, by definition of c and (11), we have
that c(p�v) ≥ c = c(δc� v) for all v ∈ W , that is, p �′ δc . By point 2 of Defi-
nition 5, it follows that p �◦ δc , that is, V (p) ≥ V (δc) = c = infv∈W c(p�v). In
other words, we have shown that V (p) = infv∈W c(p�v) for all p ∈ Δ. By (10)
and since V represents �◦, we can conclude that �◦ = �̂, proving the state-
ment. Q.E.D.
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