
Online Appendix

This appendix includes all the missing proofs and the ancillary facts used in the main body
of the paper. We begin with a section on facts instrumental for Theorem 1 and Proposition
5.

Foundation

Recall the definition of <′ in Section 5, that is,

? <′ @
def⇐⇒ _? + (1 − _) A < _@ + (1 − _) A ∀_ ∈ (0, 1] ,∀A ∈ Δ.

The goal of this section is to provide a Multi-Expected Utility representation for <′.

Lemma 1. Let < be a binary relation on Δ that satisfies Weak Order. The following statements
are true:

1. The relation < satisfies M-NCI if and only if for each ? ∈ Δ and for each< ∈ R

? < X<41 =⇒ ? <′ X<41 . (Equivalently ? %′ X<41 =⇒ X<41 � ?.)

2. If < satisfies Monotonicity, then for each G,~ ∈ R:

G > ~ =⇒ XG �′ X~ . (12)

3. If < satisfies Monetary equivalent, then for each G,~ ∈ R: there exists< ∈ R+ such that

X~+<41 <
′ XG <

′ X~−<41 . (13)

Proof. All three points follow from the definition of <′ and M-NCI, Monotonicity, and Mon-
etary equivalent, respectively. �

Aumann Utilities and Multi-Expected Utility Representations

In this section, in our formal results, we consider a binary relation <∗ over Δ such that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ W (14)
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whereW ⊆ �
(
R:

)
. Recall that a function E ∈ �

(
R:

)
is an Aumann utility if and only if

? �∗ @ =⇒ E? (E) > E@ (E) and ? ∼∗ @ =⇒ E? (E) = E@ (E) .

We denote by 4 the vector whose components are all 1s. We endow�
(
R:

)
with the distance

3 : �
(
R:

)
×�

(
R:

)
→ [0,∞) defined by

3 (5 , 6) =
∞∑
==1

(
1
2

)=
min

{
max

G∈[−=4,=4]
|5 (G) − 6 (G) | , 1

}
∀5 , 6 ∈ �

(
R:

)
.

It is routine to show that
(
�

(
R:

)
, 3

)
is separable.2⁴ Moreover, if {5<}<∈N ⊆ �

(
R:

)
is such

that 5<
3→ 5 , then {5<}<∈N converges uniformly to 5 on each compact subset of R: .

Proposition 7. If <∗ is as in (14) and such that

G > ~ =⇒ XG �∗ X~, (15)

then <∗ admits a strictly increasing Aumann utility.

Proof. By (14), observe that G > ~ implies E (G) ≥ E (~) for all E ∈ W. This implies that
each E ∈ W is increasing. By Aliprantis and Border (2006, Corollary 3.5), there exists a
countable 3-dense subset � ofW. Clearly, we have that

? <∗ @ =⇒ E? (E) ≥ E@ (E) ∀E ∈ �. (16)

Vice-versa, consider ?, @ ∈ Δ such that E? (E) ≥ E@ (E) for all E ∈ �. Since ? and @ have
compact support, there exists =̄ ∈ N such that [−=̄4, =̄4] contains both supports. Consider
E ∈ W. Since � is 3-dense inW, there exists a sequence {E; };∈N ⊆ � such that E;

3→ E . It
follows that E; converges uniformly on [−=̄4, =̄4]. This implies that

E? (E) =
∫
[−=̄4,=̄4]

Ed? = lim
;

∫
[−=̄4,=̄4]

E;d? = lim
;
E? (E; )

≥ lim
;
E@ (E; ) = lim

;

∫
[−=̄4,=̄4]

E;d@ =

∫
[−=̄4,=̄4]

Ed@ = E@ (E) .

2⁴A proof is available upon request.
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By (14) and (16) and since E was arbitrarily chosen, we can conclude that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ �. (17)

Since� is countable, we can list its elements: � = {E<}<∈N. Set1; = ;+max {|E; (−;4) | , |E; (;4) |}
for all ; ∈ N and 0< = Π<

;=11; ≥ 1< for all< ∈ N. Finally, define E : R: → R by

E (G) =
∞∑
<=1

E< (G)
0<

∀G ∈ R: . (18)

We first prove that E is a well-defined continuous function. Fix G ∈ R: . It follows that there
exists <̄ ∈ N such that G ∈ [−<4,<4] for all< ≥ <̄. Since each E< is increasing, we have
that |E< (G) | ≤ max {|E< (−<4) | , |E< (<4) |} ≤ 1< ≤ 0< for all< ≥ <̄. Since 0< ≥ <! for
all< ∈ N, it follows that

|E< (G) |
0<

=
|E< (G) |
1<0<−1

≤ 1
0<−1

≤ 1
(< − 1)! ∀< ≥ <̄ + 1.

This implies that the right-hand side of (18) converges. Since G was arbitrarily chosen, E is
well-defined. Next, consider = ∈ N. From the same argument above, we have that

|E< (G) |
0<

≤ 1
(< − 1)! ∀G ∈ [−=4, =4] ,∀< ≥ = + 1.

By Weierstrass’"-test and since {E</0<}<∈N is a sequence of continuous functions, we can
conclude that E =

∑∞
<=1

E<
0<

converges uniformly on [−=4, =4], yielding that E is continuous
on [−=4, =4]. Since = was arbitrarily chosen, it follows that E is continuous.

Finally, assume that ? �∗ @ (resp. ? ∼∗ @). By (17), we have that E? (E<) ≥ E@ (E<) for
all< ∈ N and E? (E<̂) > E@ (E<̂) for some <̂ ∈ N (resp. E? (E<) = E@ (E<) for all< ∈ N).
In particular, we have that E? (E</0<) ≥ E@ (E</0<) for all < ∈ N and E? (E<̂/0<̂) >

E@ (E<̂/0<̂) for some <̂ ∈ N (resp. E? (E</0<) = E@ (E</0<) for all< ∈ N). Since
∑∞
<=1

E<
0<

converges uniformly on compacta and the supports of ? and @ are compact, we can conclude
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that

E? (E) − E@ (E) = E?

( ∞∑
<=1

E<

0<

)
− E@

( ∞∑
<=1

E<

0<

)
= lim

;

;∑
<=1

E?

(
E<

0<

)
− lim

;

;∑
<=1

E@

(
E<

0<

)
= lim

;

[
;∑

<=1

(
E?

(
E<

0<

)
− E@

(
E<

0<

))]
.

This implies that if ? �∗ @ (resp. ? ∼∗ @), then E? (E) > E@ (E) (resp. E? (E) = E@ (E)),
proving that E is an Aumann utility. In particular, by (15), E is strictly increasing. �

Consider a binary relation <∗ on Δ. DefineWmax (<∗) as the set of all strictly increasing
functions E ∈ �

(
R:

)
such that E (0) = 0 and ? <∗ @ implies E? (E) ≥ E@ (E). We say that a

setW in �
(
R:

)
has full image if and only if

∀G,~ ∈ R: , ∃< ∈ R+ s.t. E (~ +<41) ≥ E (G) ≥ E (~ −<41) ∀E ∈ W .

Proposition 8. Let <∗ be a binary relation on Δ represented as in (14). If <∗ satisfies (12)
and (13), thenWmax (<∗) is a nonempty convex set with full image that satisfies (14).

Proof. Consider E1, E2 ∈ Wmax (<∗) and _ ∈ (0, 1). Since both functions are strictly in-
creasing and continuous and such that E1 (0) = 0 = E2 (0), it follows that _E1 + (1 − _) E2 is
strictly increasing, continuous, and takes value 0 in 0. Since E1, E2 ∈ Wmax (<∗), if ? <∗ @,
then E? (E1) ≥ E@ (E1) and E? (E2) ≥ E@ (E2). This implies that

E? (_E1 + (1 − _) E2) = _E? (E1) + (1 − _) E? (E2)
≥ _E@ (E1) + (1 − _) E@ (E2) = E@ (_E1 + (1 − _) E2) ,

proving that _E1 + (1 − _) E2 ∈ Wmax (<∗) and, in particular, Wmax (<∗) is convex. By
Proposition 7, there exists a strictly increasing Ê ∈ �

(
R:

)
such that

? �∗ @ =⇒ E? (Ê) > E@ (Ê) and ? ∼∗ @ =⇒ E? (Ê) = E@ (Ê) .

Without loss of generality, we can assume that Ê (0) = 0 (given Ê , set E = Ê − Ê (0)) and,
in particular, we have that Ê ∈ Wmax (<∗), proving thatWmax (<∗) is nonempty. Since
<∗ satisfies (13), it follows thatWmax (<∗) has full image. Since <∗ satisfies (12), E is
increasing for all E ∈ W. This implies that for each E ∈ W and for each = ∈ N the function
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E= =
(
1 − 1

=

)
E + 1

=
Ê −

[ (
1 − 1

=

)
E (0) + 1

=
Ê (0)

]
∈ Wmax (<∗). By definition, if ? <∗ @, then

E? (E) ≥ E@ (E) for all E ∈ Wmax (<∗). Vice-versa, we have that

E? (E) ≥ E@ (E) ∀E ∈ Wmax (<∗)

=⇒ E?

((
1 − 1

=

)
E + 1

=
Ê

)
≥ E@

((
1 − 1

=

)
E + 1

=
Ê

)
∀E ∈ W,∀= ∈ N

=⇒ E? (E) ≥ E@ (E) ∀E ∈ W =⇒ ? <∗ @,

proving that (14) holds withWmax (<∗) in place ofW. �

We conclude by discussing Multi-Expected Utility representations which feature odd
sets. To do this, we make two simple observations. First, recall the map f : Δ→ Δ, which
swaps gains with losses, defined by

f (?) (�) = ? (−�) for all Borel subsets of R: and for all ? ∈ Δ.

It is immediate to see that f is affine and f (f (?)) = ? for all ? ∈ Δ. Second, by the Change
of Variable Theorem (see, e.g., Aliprantis and Border 2006, Theorem 13.46), we have that

Ef (A ) (E) =
∫
R:
Edf (A ) = −

∫
R:
ĒdA = −EA (Ē) ∀A ∈ Δ,∀E ∈ �

(
R:

)
(19)

where Ē : R: → R is defined by Ē (G) = −E (−G) for all G ∈ R: and for all E ∈ �
(
R:

)
.

Proposition 9. Let <∗ be a binary relation on Δ represented as in (14) which satisfies (12)
and (13). The following statements are equivalent:

(i) For each ?, @ ∈ Δ
? <∗ @ ⇐⇒ f (@) <∗ f (?) .

(ii) For each ?, @ ∈ Δ
? <∗ @ =⇒ f (@) <∗ f (?) .

(iii) Wmax (<∗) is odd.

Moreover, ifW in (14) is odd, then (i) and (ii) hold.

For the last part of the statement, that is proving that ifW is odd, then (i) and (ii) hold,
we can dispense with the assumption that <∗ satisfies (12) and (13). The proof will clarify.

5



Proof. By Proposition 8, we have that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ Wmax (<∗) .

In other words, for the first part of the statement, we can replaceW in (14)withWmax (<∗).
(i) implies (ii). It is obvious.

(ii) implies (iii). Fix E ∈ Wmax (<∗). By definition of Ē and since each E inWmax (<∗) is
strictly increasing, continuous, and such that E (0) = 0, we have that Ē is strictly increasing,
continuous, and such that Ē (0) = 0. By assumption and (19), we have that

? <∗ @ =⇒ f (@) <∗ f (?) =⇒ Ef (@) (E) ≥ Ef (?) (E) =⇒ −E@ (Ē) ≥ −E? (Ē) =⇒ E? (Ē) ≥ E@ (Ē) .

By definition ofWmax (<∗), we can conclude that Ē ∈ Wmax (<∗), proving thatWmax (<∗)
is odd.

(iii) implies (i). By (19) and sinceW is odd and represents <∗, we have that

? <∗ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ W ⇐⇒ E? (Ē) ≥ E@ (Ē) ∀E ∈ W
⇐⇒ Ef (@) (E) ≥ Ef (?) (E) ∀E ∈ W ⇐⇒ f (@) <∗ f (?) ,

proving the implication (sinceWmax (<∗) represents <∗) and also the second part of the
statement. �

Representing <′

We can finally provide a Multi-Expected Utility representation for <′.

Proposition 10. If < satisfiesWeak Order, Continuity, Monotonicity, andMonetary equivalent,
then

? <′ @ ⇐⇒ E? (E) ≥ E@ (E) ∀E ∈ Wmax (<′) .

Moreover,Wmax (<′) is a nonempty convex set with full image.

Proof. By the same techniques of Cerreia-Vioglio (2009, Proposition 22) (see also Cerreia-
Vioglio et al. 2017, Lemma 1 and Footnote 10), <′ is a preorder that satisfies Sequential
Continuity and Independence.2⁵ By Evren (2008, Theorem 2), there exists a set W ⊆

2⁵That is, for each two generalized sequences {?U }U ∈� and {@U }U ∈� in Δ

?U <
′ @U ∀U ∈ �, ?U → ?, and @U → @ =⇒ ? <′ @.
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�
(
R:

)
such that ? <′ @ if and only if E? (E) ≥ E@ (E) for all E ∈ W. By Lemma 1 and

since < is a Weak Order which satisfies Monotonicity and Monetary equivalent, we have
that <′ satisfies (12) and (13). By Proposition 8 and considering <′ in place of <∗,W can
be chosen to beWmax (<′), proving the statement. �

Missing Proofs

In this section, we prove Proposition 4. We begin by showing that if < admits a finite
essential Cautious Utility representation, then it is canonical. This fact will be key in proving
the aforementioned proposition.

Lemma 2. If < admits a finite essential Cautious Utility representation, then it is canonical.

Proof. Define <∗ to be such that ? <∗ @ if and only if E? (E) ≥ E@ (E) for all E ∈ W where
W is a finite essential Cautious Utility representation of <. SinceW is finite, we have
that the smallest convex cone containingW, denoted by cone (W), is closed with respect
to the f

(
�

(
R:

)
,Δ

)
-topology and so is the set cone (W) +

{
\1R:

}
\∈R. By definition of

Wmax (<∗), it follows that cone (W) \ {0} ⊆ Wmax (<∗). By Proposition 8, Remark 4, and
(Evren, 2008, Theorem 5) and sinceW is a Cautious Utility representation, we have that
(where the closure is in the f

(
�

(
R:

)
,Δ

)
-topology)

cone (W) +
{
\1R:

}
\∈R = cl

(
cone (Wmax (<∗)) +

{
\1R:

}
\∈R

)
⊇ cl

(
Wmax (<∗) +

{
\1R:

}
\∈R

)
⊇ Wmax (<∗) +

{
\1R:

}
\∈R ,

yielding that cone (W) \ {0} ⊇ Wmax (<∗) and, in particular, cone (W) \ {0} =Wmax (<∗).
Since the functional E ↦→ 2 (?, E) is quasiconcave over cone (W) \ {0} for all ? ∈ Δ, it is
immediate to see that

+ (?) = min
E∈W

2 (?, E) = min
E∈cone(W)\{0}

2 (?, E) ∀? ∈ Δ.

By Remark 4 and sinceW = {E8}=8=1 is a finite Cautious Utility representation, we have
that < satisfies Axioms 1- 5. By Theorem 1 and its proof,Wmax (<′) is a canonical Cautious
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Utility representation for <. In particular, we have that

+ (?) = min
E∈W

2 (?, E) = min
E∈cone(W)\{0}

2 (?, E) = inf
E∈Wmax (<′)

2 (?, E) ∀? ∈ Δ.

Since <′ is the largest subrelation of < that satisfies the Independence axiom and ? <∗ @
implies ? < @, we have that <∗ is a subrelation of <′ andWmax (<′) ⊆ Wmax (<∗) =
cone (W) \ {0}. By contradiction, assume thatWmax (<′) ≠ cone (W) \ {0}. SinceWmax (<′)
is a convex set closed with respect to strictly positive scalar multiplications, this implies
thatW * Wmax (<′). IfW is a singleton, then < is Expected Utility and, in particu-
lar, <′ is complete and coincides with <. This implies thatW = {E1} andWmax (<′) =
{_E1}_>0 = cone (W) \ {0}, a contradiction. Assume W is not a singleton. Consider
Ĕ ∈ W\Wmax (<′). SinceW is essential, there exists ?̄ ∈ Δ such that minE∈W 2 (?̄, E) <
minE∈W\{Ĕ} 2 (?̄, E). SinceW = {E8}=8=1 and = ≥ 2, without loss of generality, we can set
Ĕ = E= ∉Wmax (<′). In particular, we have that

inf
E∈Wmax (<′)

2 (?̄, E) = min
E∈W

2 (?̄, E) = 2 (?̄, E=) < 2 (?̄, E8) ∀8 ∈ {1, ..., = − 1} . (20)

Consider a sequence {Ê<}<∈N ⊆ Wmax (<′) such that 2 (?̄, Ê<) ↓ infE∈Wmax (<′) 2 (?̄, E). By
construction and sinceWmax (<′) ⊆ cone (W) \ {0}, there exists a collection of scalars{
_<,8

}
<∈N,8∈{1,...,=} ⊆ [0,∞) such that Ê< =

∑=
8=1 _<,8E8 for all < ∈ N. Since Ê< is strictly

increasing, we have that for each< ∈ N there exists 8 ∈ {1, ..., =} such that _<,8 > 0. Define
_<,f =

∑=
8=1 _<,8 > 0 for all< ∈ N. For each< ∈ N and for each 8 ∈ {1, ..., =} define also

_̄<,8 = _<,8/_<,f as well as Ẽ< =
∑=
8=1 _̄<,8E8 = Ê</_<,f . Since _<,f > 0 for all < ∈ N, it

is immediate to see that 2 (?̄, Ẽ<) = 2 (?̄, Ê<) for all < ∈ N and, in particular, 2 (?̄, Ẽ<) ↓
infE∈Wmax (<′) 2 (?̄, E). For each< ∈ N denote by _̄< the R= vector whose 8-th component is
_̄<,8 . Since

{
_̄<

}
<∈R is a sequence in the R= simplex, there exists a subsequence

{
_̄<;

}
;∈N

such that _̄<; ,8 → _̄8 ∈ [0, 1] for all 8 ∈ {1, ..., =} and
∑=
8=1 _̄8 = 1. It is immediate to see that

Ẽ<; =
∑=
8=1 _̄<; ,8E8

f (� (R:),Δ)
→ ∑=

8=1 _̄8E8 = Ẽ where Ẽ is continuous, strictly increasing, and
such that Ẽ (0) = 0. Moreover, for each ?, @ ∈ Δwe have that ? <′ @ implies E? (Ẽ) ≥ E@ (Ẽ),
proving that Ẽ ∈ Wmax (<′). Note that _̄= < 1, otherwise, we would have that E= = Ẽ ∈
Wmax (<′), a contradiction. By (20) and since _̄= < 1 and the functional E ↦→ 2 (?, E) is
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explicitly quasiconcave over co (W) for all ? ∈ Δ,2⁶ we have that

2 (?̄, E=) < 2 (?̄, Ẽ) = lim
;
2
(
?̄, Ẽ<;

)
= lim

<
2 (?̄, Ẽ<) = inf

E∈Wmax (<′)
2 (?̄, E) = 2 (?̄, E=) ,

a contradiction. It follows thatWmax (<′) = cone (W) \ {0} and, in particular,W repre-
sents also <′. This implies thatW is canonical. �

Proof of Proposition 4. We first prove the first part of the statement assuming < satisfies u-
CPT, and then we will move to the additive case. Since D (0) = 0 and D is strictly increasing,
it follows that there exists C̄ > 0 such that [−C̄ , C̄] ⊆ ImD. Let Δ0 ( [0, C̄]) be the set of finitely
supported probabilities over [0, C̄]. Consider ?̃ ∈ Δ0 ( [0, C̄]). By definition, we have that
there exist two unique collections {C8}=8=1 ⊆ [0, C̄] and {_8}=8=1 ⊆ [0, 1] such that supp? =

{C8}=8=1,
∑=
8=1 _8 = 1, and ?̃ =

∑=
8=1 _8XC8 . Without loss of generality, we can assume that

C1 < ... < C=. We define +̃ : Δ0 ( [0, C̄]) → R by

+̃ (?̃) =
=−1∑
9=1

(
F+

(
=∑
8= 9

_8

)
−F+

(
=∑

8= 9+1
_8

))
E
(
C 9
)
+F+ (_=) E (C=)

for all ?̃ ∈ Δ0 ( [0, C̄]). We next show that for each ?̃ ∈ Δ0 ( [0, C̄]) and for each C̃ ∈ [0, C̄], if
+̃ (?̃) = +̃ (XC̃ ), then +̃ (_?̃ + (1 − _) XC̃ ) = +̃ (XC̃ ) for all _ ∈ (0, 1). Consider ?̃ ∈ Δ0 ( [0, C̄])
and C̃ ∈ [0, C̄] such that +̃ (?̃) = +̃ (XC̃ ). Given ?̃ ∈ Δ0 ( [0, C̄]), since {C8}=8=1 ⊆ [0, C̄] ⊆ ImD,
there exists {G8}=8=1 ⊆ R: such that D (G8) = C8 for all 8 ∈ {1, ..., =}. Consider ? =

∑=
8=1 _8XG8 .

It is immediate to see that +̃ (?̃) = + (?). Since < admits a Symmetric Cautious Utility
representation, there exists 2 ∈ R such that ? ∼ X241 . This implies that + (?) = +

(
X241

)
and, in particular, D (241) ∈ [0, C̄]. Moreover, since D and E are strictly increasing, we
have that D (241) = C̃ ∈ [0, C̄] and +

(
X241

)
= +̃ (XC̃ ). By Remark 4 and since < admits a

Symmetric Cautious Utility representation, we have that < satisfies M-NCI. This yields that
_? + (1 − _) X241 ∼ X241 for all _ ∈ (0, 1). This implies that

+̃ (_?̃ + (1 − _) XC̃ ) = +
(
_? + (1 − _) X241

)
= +

(
X241

)
= +̃ (XC̃ ) .

2⁶Formally, see e.g. (Aliprantis and Border, 2006, p. 300), given ? ∈ Δ, for each ℎ ∈ N\ {1}, for each
{E; }ℎ;=1 ⊆ co (W), and for each {_; }ℎ;=1 ⊆ [0, 1] such that

∑ℎ
;=1 _; = 1 and _ℎ < 1

2 (?, E8 ) > 2 (?, Eℎ) ∀8 ∈ {1, ..., ℎ − 1} =⇒ 2

(
?,

ℎ∑
8=1

_8E8

)
> 2 (?, Eℎ) .
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By Bell and Fishburn (2003, Theorem 1) applied to +̃ , it follows thatF+ is the identity. The
same proof, performedwith [−C̄ , 0] in place of [0, C̄] andF+ replaced byF−, yields thatF− is
the identity. These two facts together allow us to conclude that ? ↦→ + (?) = CPTE,F+,F− (?D)
is an Expected Utility functional with utility E ◦D : R: → R. We next assume that < admits
an Additive CPT representation. As before consider C̄ > 0. Define Δ0 ( [0, C̄]) and +̃ as before
with E replaced by D1. For each ?̃ ∈ Δ0 ( [0, C̄]) define ? in Δ to be the product measure
?̃ ⊗ X0... ⊗ X0. It is immediate to see that +̃ (?̃) = + (?) for all ?̃ ∈ Δ0 ( [0, C̄]). As before,
we can show that for each ?̃ ∈ Δ0 ( [0, C̄]) and for each C̃ ∈ [0, C̄], if +̃ (?̃) = +̃ (XC̃ ), then
+̃ (_?̃ + (1 − _) XC̃ ) = +̃ (XC̃ ) for all _ ∈ (0, 1). Consider ?̃ ∈ Δ0 ( [0, C̄]) and C̃ ∈ [0, C̄] such
that +̃ (?̃) = +̃ (XC̃ ). This implies that + (?) = +

(
XC̃41

)
, that is, ? ∼ XC̃41 . By Remark 4 and

since < admits a Symmetric Cautious Utility representation, we have that < satisfies M-NCI.
This yields that _? + (1 − _) XC̃41 ∼ XC̃41 for all _ ∈ (0, 1). This implies that

+̃ (_?̃ + (1 − _) XC̃ ) = +
(
_? + (1 − _) XC̃41

)
= +

(
XC̃41

)
= +̃ (XC̃ ) .

By Bell and Fishburn (2003, Theorem 1) applied to +̃ , it follows thatF+ is the identity. The
same proof, performed with [−C̄ , 0] in place of [0, C̄] andF+ replaced byF−, yields thatF−

is the identity. This implies that < admits an Expected Utility representation with utility
D : R: → R defined by D (G) = ∑:

8=1D8 (G8) for all G ∈ R: .

As for the second part of the statement, by Lemma 2 and sinceW is a finite essential
Cautious Utility representation, we have thatW is a canonical representation, that is,W =

{E8}=8=1 represents also <′. Since < is Expected Utility with utility E ◦D (where in the linear
case E is the identity and D is additively separable), we have that <′ coincides with <,
yielding that for each 8 ∈ {1, ..., =} there exists _8 > 0 such that E8 = _8 (E ◦ D). This implies
that 2 (?, E8) = 2 (?, E ◦ D) for all ? ∈ Δ and for all 8 ∈ {1, ..., =}. SinceW is essential, this
implies thatW is a singleton. SinceW = {E1} andW is odd, this implies that E1 is odd
and, in particular, < is loss neutral for risk and exhibits no endowment effect. �
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