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Abstract

Despite being the fundamental primitive of the study of decision-making in economics, choice
correspondences are not observable: even for a single menu of options, we observe at most
one choice of an individual at a given point in time, as opposed to the set of all choices she
deems most desirable in that menu. However, it may be possible to observe what a person
chooses from a feasible menu at various times, repeatedly. We propose a method of inferring
the choice correspondence of an individual from this sort of choice data. First, we derive our
method axiomatically, assuming an ideal dataset. Next, we develop statistical techniques to
implement this method for real-world situations where the sample is often small. A special case
of this methodology allows for the estimation of individual preferences from repeated pairwise
choice data. To demonstrate the applicability of the method, we use it on the data of a famous
experiment (Tversky, 1969) on transitivity of preferences. We find that the conclusions this
data leed to are more nuanced than the original ones.
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1 Introduction

At the core of revealed preference theory is the idea that, while preferences and utilities
are unobservable constructs, choices are observable. An advantage is thus given to theories
derived from choice, and the main primitive of this approach is the notion of choice corre-
spondence, a function that maps each feasible menu of options to the set of choices from that
menu. Most textbooks use choice correspondences as the starting point of microeconomic
theory from which preferences, then utility functions, and then the entirety of economic
analysis, are derived. Over the last century, choice correspondences proved to be excep-
tionally useful for the development of the theory of rational decision-making as well as its
boundedly rational alternatives.
On closer scrutiny, however, one has to concede that choice correspondences are unob-

servable as well. After all, correspondences assigns to any given menu a set of choices, but
it is practically impossible to observe such a set. The choice correspondence from the set
{𝑥,𝑦} may well be {𝑥,𝑦}, e.g., if the individual is indifferent or preferences are incomplete;
but, at each trial, we can only observe her choose 𝑥 or 𝑦, not both. Indeed, while the use of
choice correspondences is often motivated in first-year Ph.D. courses as based on observabil-
ity, this often leads to embarrassing questions—in our experience, invariably asked by some
alert student—about how such set-valued functions can really be observed, and how their
properties can actually be tested. Many prominent textbooks either avoid the discussion of
this issue (thereby choosing to treat choice correspondences as theoretical abstractions), or
simply assume it away by working only with single-valued choice correspondences.1 A few
suggest informal ways of thinking about choice correspondences as observable entities, but
this never goes beyond offering a few passing sentences to this effect.2

The present paper introduces a general method of inferring choice correspondences us-
ing the data obtained through repeated observations of choices made by individuals. More
1Simplifying as it is, this latter approach not only fails solving the unobservability problem, it serves rather

poorly as a foundation for even the most basic economic models of decision making. After all, if a choice cor-
respondence is single-valued, it can never be rationalized by a preference relation that allows for indifference,
thereby ruling out the standard model of consumer choice, as well as all non-degenerate cases of expected
utility theory under risk, among others. In addition, it is known that single-valuedness hypothesis cannot be
satisfied by continuous choice correspondences, unless one makes severe assumptions on the grand space of
alternatives (cf. Nishimura and Ok, 2014).
2For instance, Mas-Colell, Whinston and Green (1995) says that the set of choices of an individual from a

menu 𝐵 “can be thought of as containing those alternatives that we would actually see chosen if the decision
maker were repeatedly to face the problem of choosing an alternative from set 𝐵.” In many ways, our work
can be thought of as trying to extract formal content from this intuitive statement in a manner that allows one
infer choice correspondences in practice.
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precisely, we aim to “compute” a choice correspondence from the number of times each
option is chosen by a person from a given menu when asked repeatedly. As such, our start-
ing point is that what is observable comes in the form of a vector of relative frequencies
(of choices), that is, in the form of stochastic choice data.3 This data may originate from
experiments—below, we show how our procedure can be applied to existing data—or from
market behavior, exploiting the granular observation of choices that marketing firms have
access to in the digital age.

Our Approach. We approach the problem in two stages. These are distinct from each
other both procedurally and conceptually, and are primed to capture different aspects of
the matter. In the first stage, we examine methods of constructing a choice correspondence
if the analyst had access to the actual relative choice frequencies of an individual with perfect
accuracy. In the second stage, we address the issue that real data includes only a finite (and
often small) sample of observations, and suggest a statistical procedure to take this into
account to infer an (empirical) choice correspondence for that person. We summarize what
we actually do in these stages next.

Choice Imputation with Ideal Data. At the outset, we look at the problem at hand the-
oretically, assuming that the analyst has access to the probability P(𝑥, 𝑆) with which each
option 𝑥 is chosen by a subject from a given menu 𝑆 . In other words, we study the functions
that map any given stochastic choice function P to a choice correspondence. We refer to any
such function as a choice imputation (provided that it never declares an option with zero
probability of being selected in a menu as a “choice” in that menu).
There are many interesting types of choice imputations. For example, we may declare

a feasible option in 𝑆 as a “choice” if that option has a positive probability of being chosen
in 𝑆 . But this is likely to be too permissive. After all, if the probability of 𝑥 being chosen
from {𝑥,𝑦} is negligibly small, it may be reasonable to think of it as a “mistake,” instead
of a bona fide “choice.” We may also go to the opposite extreme, and consider only the
options with maximum likelihood of being chosen in a menu. But, obviously, this may well
be too restrictive; for instance, it would not consider 𝑥 as a choice from {𝑥,𝑦} even if the
probability of 𝑥 being chosen is as high as .49. And, of course, there are many intermediate
imputations that possess a less extreme makeup. No imputation is likely to be suitable in
3In the literature, the term stochastic choice is used to indicate the relative frequency of the choices of an

individual in repeated trials, as well as across individuals when each person is observed only once. In this
paper, we exclusively focus on multiple choices made by the same individual.
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all contexts; there does not appear to be a reason a priori to work with any one specific
imputation.
To address this issue systematically, we adopt an axiomatic approach, and consider some

basic properties that characterize an interesting one-parameter family of choice imputa-
tions. A special element of this family corresponds to the idea mentioned in footnote 2, and
maps any given stochastic choice function P to the choice correspondence that chooses in a
menu 𝑆 all alternatives 𝑥 with P(𝑥, 𝑆) > 0. For any other element of this family, there exists
a constant 𝜆 ∈ (0, 1] such that any P is mapped to the choice correspondence that declares{

𝑥 ∈ 𝑆 : P(𝑥, 𝑆) ≥ 𝜆max
𝑦∈𝑆
P(𝑦, 𝑆)

}
as the set of “choices” from any menu 𝑆. We refer to any one of these choice imputations
as a Fishburn imputation.4 The family of Fishburn imputations includes the two examples
discussed above, but it allows for many intermediate cases: For any 𝜆 ∈ (0, 1), the associated
imputation declares 𝑥 as a choice in a menu 𝑆 when its probability of being selected is higher
than a factor (namely, 𝜆) of the choice probability of any other option in 𝑆 . It is worth noting
that, for menus with at least three options, this is not the same as focusing on alternatives
chosen with probability higher than a certain threshold.5

The value of 𝜆 here determines how exclusive the associated Fishburn imputation really
is; we thus call it the level of selectivity. Low values of 𝜆 corresponds to inclusive imputa-
tions in which any choice with even a small choice probability is considered as a choice.
The largest value 𝜆 = 1 corresponds to maximally exclusive imputations where only those
alternatives with maximum likelihood of being chosen in a menu are qualified as “choices”
in that menu. The decision of which level of selectivity 𝜆 to be adopted in a particular em-
pirical application belongs to the analyst and should best be tailored to that application.
(This is very much reminiscent of statistical parameters used in complex hypothesis testing
models.) For example, in highly noisy environments—e.g., when choices are made under
time pressure, under disturbance, or with low incentives—the analyst may adopt a higher
𝜆, discarding options that have intermediate probability of being chosen. In other contexts,
a lower level of selectivity may be more reasonable to adopt.
4This map was first introduced in Fishburn (1978), although with a different goal; see below.
5For any 𝜃 ∈ (0, 1), consider the function that maps any stochastic choice function P to the choice cor-

respondence that declares {𝑥 ∈ 𝑆 : P(𝑥, 𝑆) ≥ 𝜃 } as the set of “choices” from any menu 𝑆. Easy examples
show that this is distinct from any Fishburn imputation (unless the choice domain consists only of pairwise
problems).
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Choice Imputation with Real Data. In reality, of course, we do not observe P(·, 𝑆) di-
rectly, but rather get information about it through finitely many observations. This brings
us to the second stage of our construction: Even if we have decided to use a Fishburn im-
putation with a particular level of selectivity 𝜆, our ultimate elicitation problem requires us
decide whether or not to include an option 𝑥 in the set of “choices” from 𝑆, given the empir-
ical distribution of observed choices. This leads to the multiple-hypotheses testing problem
whose null hypotheses are

𝐻𝑥 : P(𝑥, 𝑆) ≥ 𝜆max
𝑦∈𝑆
P(𝑦, 𝑆), 𝑥 ∈ 𝑆 .

At this junction, we adopt the standard assumption that choice trials are independent and
the probability of choice of any alternative in 𝑆 is the same in each trial. In addition to 𝜆, the
associated test procedure depends, of course, on the sample size 𝑛 (i.e., the total number of
times we see the agent choose from 𝑆), the number of times each 𝑥 is chosen in 𝑆, and the
level of control 𝛼 for the family-wise error rate (to be chosen by the analyst). Given these
parameters, we develop a statistical method to compute the set of all potential choices of
the individual from the menu 𝑆 as

{𝑥 ∈ 𝑆 : 𝐻𝑥 is not rejected at the control level 𝛼}

by building on the Benjamini-Hochberg multiple testing procedure. This method extends
to inferring the values of the choice correspondence of the decision maker across multiple
menus. As such, it assigns to every data set pertaining to repeated choice trials a particular
choice correspondence that depends on the observed data, the number of repetitions, as
well as two parameters chosen by the analyst, namely, the level of control 𝛼 and the level
of selectivity 𝜆.

Inferring Preferences. While choice correspondences have a more foundational standing
in economic theory, a very large majority of theoretical and experimental work on decision
theory and behavioral economics are couched in terms of preference relations. Yet, from
the empirical viewpoint, focusing on preferences are not less problematic than working
with choice correspondences. If we have observed a person choose 𝑥 over 𝑦 in pairwise
comparisons a certain number of times, and 𝑦 over 𝑥 in others, we need a rule to justify
one of the following four possible conclusions: (i) “the subject prefers 𝑥 over 𝑦 strictly,” (ii)
“the subject prefers 𝑦 over 𝑥 strictly,”, (iii) “the subject is indifferent between 𝑥 and 𝑦,” and
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(iv) “the subject is unable to compare 𝑥 and 𝑦.” The methods developed in Section 2 and 3
provide a rule that is directly applicable to this sort of situations.
We develop our methodology below in terms of choice correspondences only because

this is more comprehensive than focusing on individual preferences. The entirety of the
present work, its theoretical as well as statistical parts, remains applicable if one is interested
instead in inferring a person’s preferences over a finite set of alternatives. For, this case is
none other than determining one’s choice correspondence on the domain of pairwise choice
problems alone. In fact, for such a restricted domain, the statistical tests that we provide in
Section 3 have closed-form descriptions, and possess a fair bit of (statistical) power.

Stochastic vs. Deterministic Choice. Before proceeding, we should directly address a
potential doubt. If data comes in the form of an empirical stochastic choice function, one
may be tempted to altogether abandon deterministic choice theory and focus exclusively on
stochastic choice as a primitive, making use of the rich nature of this data. Indeed, this is
studied by a vast and vibrant literature, a major avenue of research in decision-making.
Yet, this does not invalidate the need to properly construct deterministic choice. With

rare exceptions, the entirety of economic analysis is built on deterministic choices, often
summarized as preferences or utilities.6 Unless we are ready to leave it all aside and
focus solely on stochastic counterparts, an interesting but rather radical suggestion, one
would have to derive deterministic behavior. Take, for example, Expected Utility Theory
and Prospect Theory. Both are built on preference relations—deterministic constructs di-
rectly derived from choice correspondences (e.g., from doubleton sets). To test if behavior
follows either model—a classic quest in the experimental literature—we need to construct
the preference relation, as this is the language in which these theories are defined. Simi-
larly, we need to derive preferences any time we want to test their transitivity (as we do in
Section 4), stationary and exponential discounting for time preferences, altruism in social
preferences, ambiguity aversion; if we want to test if behavior abides by standard notions
in game theory—e.g., the Nash Equilibrium is defined on deterministic preferences; and
choice correspondences are needed to test for rationality in the form of the Weak Axiom of
Revealed Preferences, or one of the many models of bounded rationality, from satisficing to
6This is different than adopting models of stochastic choice to study the choices of heterogenous agents,

where the stochasticity in the data derives from (unobserved) heterogeneity in preferences. The nature of
the latter type of models is in fact more in line with deterministic choice theory. In those models, each agent
makes a deterministic choice, but the analyst sees the choice data only in the aggregate, and hence evaluates
it “as if” it is stochastic.

5



salience to reference-dependence.
In almost any such work, the properties to be tested are defined for deterministic pref-

erences or choice correspondences, but insofar as the data is collected by observing the
choices repeatedly, it comes in the form of an empirical stochastic choice function. By the
nature of the problem, therefore, one needs to convert this data into a deterministic prefer-
ence relation or choice correspondence, and the methodology we develop below is primed
to address this need.
Moreover, summarizing a stochastic choice function in the form of a choice correspon-

dence may help one better understand the structure of that function. The idea behind this is
no different than using summary statistics to describe probability distributions, or inequal-
ity indices to study income distributions. In all these cases, using a “statistic” causes loss
of information, but this is more than compensated by the transparency one gains about a
particular aspect of the given distribution. In our case too “reducing” a stochastic choice
function to a choice correpondence causes loss of information, but it may well help us un-
cover a hidden structure of that function. For instance, two empirical stochastic choice
functions whose inferred choice correspondences are the same must share certain charac-
teristics that may not at all be evident from raw data. Inferring choice correspondences may
thus help classify repeated choice data at large.

A Case Study. To demonstrate how our method can be easily applied on real data, and that
one does not need an unrealistic set of observations for it to work, we use it to reevaluate
the choice behaviors observed in Experiment 1 of Tversky (1969), a classical and eminent
example of stochastic choice data from doubleton menus.
As we discuss below, many papers in the literature on boundedly rational deterministic

choice cites Tversky (1969) as providing evidence for nontransitive preferences, that is, cyclic
deterministic choice behavior over doubleton menus. However, Tversky (1969) only reports
relative choice frequencies—an (empirical) stochastic choice function—and uses them to
test for violations of what is called Weak Stochastic Transitivity. He does not even discuss
the issue of the potential acyclicity of (deterministic) imputed preference relations.
We apply our method to impute deterministic choice correspondences and test whether

they are transitive. We find that for reasonable choices of parameters (like 𝛼 = .05 and
𝜆 = .5), the majority of imputed preference relations (about 62% of them) are actually
transitive. Indeed, it is only with rather extreme parameters (very high levels of 𝜆) that a
majority of subjects is classified as non-transitive. At the very least, this suggests caution
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against using Tversky’s data to motivate violations of WARP in deterministic environments.

Related Literature. While the issues of observability of choice correspondences are well-
known, only a few papers have attempted to elicit them from data, and to our knowledge
all have done so introducing novel experimental procedures instead of using standard (re-
peated) choice data. For instance, Bouacida (2019) asks subjects to choose from a set of
alternatives, but allows them to choose multiple options and give them an additional (small)
payment if they do so; in that case, the agent receives one of her choices randomly. Other
papers use unincentivized additional questions after the choice to elicit the strength of pref-
erences, and to identify indifferences and/or incomparabilities. Some of these papers, no-
tably, Costa-Gomes et al. (2021), use this information to construct choice correspondences.
Whether one believes these procedures to be effective, or that they in fact introduce ad-
ditional confounds, it is plain that they are tailored for particular experiments, and hence
cannot be applied to typical choice data. In particular, none of these procedures is applica-
ble to data collected in past experiments with repeated choice trials, such as those we use
in our empirical application below.
We should also note that some authors have used different experimental methods to

elicit multiple choices, such as allowing subjects to use randomization devices7 or choice
deferrals.8 As is well known, however, these methods provide information that is markedly
different from that needed for deriving a choice correspondence.9

Finally, we emphasize that the literature on revealed preference theory based on choice
from budget sets, which started with the seminal work of Afriat (1967), does take into
account the issue of limited observability of choices and allows for the possibility of (unob-
served) choice correspondences. The papers that belong to this strand treat each observation
as a selection from the demand set of the agent at a given price configuration, and do not
attempt to construct the entire demand set at the associated budget. (See Chambers and
Echenique, 2016 for a review.) As such, they implicitly treat each observation as equally in-
formative of one’s demand correspondence, which relates it to the special case of Fishburn
7See Cohen, et al. (1985, 1987), Rubinstein (2002), Kircher, et al. (2013), Agranov and Ortoleva (2017,

2021), Dwenger et al. (2018), Miao and Zhong (2018), Cettolin and Riedl (2019), and Feldman and Rehbeck
(2020).
8See Danan and Ziegelmeyer (2006), Sautua (2017), Costa-Gomes et al. (2021), Gerasimou (2021).
9For example, Agranov and Ortoleva (2017, 2020) observe that many subjects are willing to randomize

between two alternatives 𝑥 and 𝑦. This is conceptually distinct from saying that both alternatives belong to
these subjects’ choice sets from the menu {𝑥,𝑦}; instead, it suggests merely that some agents may prefer
a particular randomization over the given options (as it would be the case, for instance, if they possessed
quasiconcave utility functions over lotteries). See Cerreia-Vioglio, et al. (2019) for more on this.
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imputations with 𝜆 = 0, where each element chosen, however infrequently, is considered
to be a choice.

2 Imputation of Choice Correspondences

Throughout the paper, 𝑋 stands for an arbitrarily fixed nonempty finite set with |𝑋 | ≥ 3.
We denote by 𝔛 the collection of all nonempty subsets of 𝑋 , and by 𝔛2 the collection of all
subsets of 𝑋 that contain exactly two elements.

2.1 Choice Imputations

Choice Correspondences. By a choice correspondence on 𝔛, we mean a set-valued map
𝐶 : 𝔛 → 𝔛 such that 𝐶 (𝑆) ⊆ 𝑆. The standard (if a bit ambiguous) interpretation is that
𝐶 (𝑆) includes all feasible alternatives that the individual deems worth choosing. (As we
explained in the Introduction, giving empirical content to this interpretation is one of the
main objectives of the present paper.) We denote the collection of all choice correspondences
on 𝔛 by cc(𝑋 ).

Stochastic Choice Functions. By a stochastic choice function on 𝔛, we mean a function
P : 𝑋 × 𝔛 → [0, 1] such that∑︁

𝑥∈𝑆
P(𝑥, 𝑆) = 1 and P(𝑦, 𝑆) = 0

for every 𝑆 ∈ 𝔛 and 𝑦 ∈ 𝑋\𝑆. The collection of all such functions is denoted by scf (𝑋 ).
For any P ∈ scf (𝑋 ), the map 𝑥 ↦→ P(𝑥, 𝑆) defines a probability distribution on 𝑆 . From

an individualistic perspective, we interpret this distribution by imagining that a decision
maker has been observed making choices from the feasible menu 𝑆 multiple times, and the
relative frequency of the times 𝑥 is chosen from 𝑆 is P(𝑥, 𝑆) in the limit, as the number
of observations tends to infinity. Thus, P(𝑥, 𝑆) is not an observable quantity, just like the
probability of getting heads in a particular coin toss is not observable. Instead, from the
viewpoint of an outside observer, it is a random entity. Put informally, it is approximately
observable in the sense that any choice experiment that tracks the choices of the agent from
𝑆 repeatedly provides a sample wherein the empirical value of the relative frequency of the
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times 𝑥 is chosen in 𝑆 is a strongly consistent estimator of P(𝑥, 𝑆).10 As we discussed in the
introduction, we will first consider below how to derive choices from P as if this function is
known, and only later account for the unobservability of P.
Before we get to work, here is one extra bit of notation: Given a stochastic choice func-

tion P and 𝑆 ∈ 𝔛, we put

𝑀P(𝑆) := max
𝑧∈𝑆
P(𝑧, 𝑆) and 𝑚P(𝑆) := min

𝑧∈𝑆
P(𝑧, 𝑆)

That is, 𝑀P(𝑆) and𝑚P(𝑆) are the choice probabilities of items in 𝑆 with the maximum and
the minimum likelihood, respectively.

Choice Imputations. At the center of our analysis is a map that assigns a choice corre-
spondence to any stochastic choice function P, that is, a map of the form

Ψ : scf (𝑋 ) → cc(𝑋 ).

The only condition that we impose on this map at the outset is that

P(𝑥, 𝑆) = 0 implies 𝑥 ∉ Ψ(P) (𝑆) (1)

for any 𝑆 ∈ 𝔛 and P ∈ scf (𝑋 ). This condition forbids designating an item that is never
chosen in 𝑆 as a choice from 𝑆 . We refer to any Ψ that satisfies this property as a choice
imputation. In words, a choice imputation Ψ is a method of transforming the behavior of
an individual represented by a stochastic choice function into a deterministic choice corre-
spondence. Loosely speaking, we wish this method to associate a choice correspondence
𝐶P to P in such a way that, for any menu 𝑆, the set 𝐶P(𝑆) consists of all items in 𝑆 that
have a “significant” probability of being chosen in 𝑆 , eliminating, for instance, items that
are chosen by mistake, in a rush, etc..

Example 1. An interesting choice imputation is one that includes anything chosen with
positive probability in the associated choice set. Formally, this imputation, which we denote
by Ψ0, maps any P ∈ scf (𝑋 ) to the choice correspondence 𝐶P,0 on 𝔛 defined by

𝐶P,0(𝑆) := {𝑥 ∈ 𝑆 : P(𝑥, 𝑆) > 0} .
10This statement is readily formalized by means of the Glivenko-Cantelli Theorem.
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The choice imputation of Example 1 provides a natural starting point, and indeed, it is
implicitly suggested by Mas-Colell, Whinston and Green (1995); see footnote 2. Neverthe-
less, it appears too inclusive. It is arguable that if 𝑥 is chosen from {𝑥,𝑦} with probability
0.001, it should probably not be included in the choice set of the agent at the menu {𝑥,𝑦}.

Example 2. For any menu 𝑆 , one may wish to include in the set of all choices only those
options in 𝑆 with the maximum probability of being chosen. This method is captured by the
choice imputation Ψ1 which maps any P ∈ scf (𝑋 ) to the choice correspondence 𝐶P,1 on 𝔛
defined by

𝐶P,1(𝑆) := {𝑥 ∈ 𝑆 : P(𝑥, 𝑆) ≥ P(𝑦, 𝑆) for all 𝑦 ∈ 𝑆} .

The choice imputationsΨ0 andΨ1 are extrememembers of an interesting one-parameter
family.

Example 3. For any P ∈ scf (𝑋 ) and 𝜆 ∈ (0, 1], define the map 𝐶P,𝜆 : 𝔛 → 𝔛 by

𝐶P,𝜆 (𝑆) := {𝑥 ∈ 𝑆 : P(𝑥, 𝑆) ≥ 𝜆𝑀P(𝑆)} .

In words, 𝐶P,𝜆 (𝑆) contains a feasible alternative 𝑥 ∈ 𝑆 iff there are no alternatives in 𝑆 that
are chosen at least 1

𝜆
times more frequently than 𝑥 . For 𝜆 close to 1, it seems unexceptionable

that we qualify themembers of𝐶P,𝜆 (𝑆) as potential “choices” of the agent from 𝑆; conversely,
for 𝜆 close to 0, it makes sense to think of the members of 𝑆\𝐶P,𝜆 (𝑆) as objects that are
chosen due to occasional mistakes. For any given 𝜆 ∈ [0, 1], the map Ψ𝜆 defined on scf (𝑋 )
by Ψ𝜆 (P) := 𝐶P,𝜆 is a choice imputation (where 𝐶P,0 is defined in Example 1). We refer to
this as a Fishburn imputation with level of selectivity 𝜆.11

When a set includes only two items, say 𝑥 and 𝑦, it is easy to see that 𝑥 ∈ 𝐶P,𝜆{𝑥,𝑦}
iff P(𝑥, {𝑥,𝑦}) ≥ 𝜆

1+𝜆 . That is, an item is deemed as a “choice” in a doubleton menu iff
it is chosen with a probability above a fixed threshold. For larger sets, however, Fishburn
imputations are more complex. Whether or not 𝑥 is included in 𝐶P,𝜆 (𝑆) depends not only
on the probability P(𝑥, 𝑆), but also on the highest choice probability in 𝑆 , namely, 𝑀P(𝑆).
For a given probability of choosing 𝑥 in 𝑆 , that option will be included in the set of choices
from 𝑆 only when the maximum probability of choice is not too high. Thus, the criterion is
11The correspondences𝐶P,𝜆 were first considered by Fishburn (1978) who sought the characterization of P
such that for every 𝜆 ∈ [0, 1], there is a (utility) function 𝑢𝜆 : 𝑋 → R with 𝐶P,𝜆 (𝑆) = argmax𝑢𝜆 (𝑆) for every
𝑆 ∈ 𝔛. In turn, they were recently used by Ok and Tserenjigmid (2020, 2022) to produce rationality criteria
for stochastic choice rules.
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more selective for sets in which some option is chosen with a very high chance, less selective
for sets in which all options are chosen with low probability.12

The extent of selectivity of a Fishburn imputation depends on the value of 𝜆, which is to
be chosen by the analyst for the problem at hand. It may be reasonable to pick higher values
of 𝜆—that is, a more selective criterion—for environments in which there is noise, or more
generally, when mistakes are expected. In those cases one may wish to disregard options
that are not chosen with sufficiently high probability. On the other hand, lower values of 𝜆
may be appropriate when there is reason to consider objects chosen with low probability as
genuine selections as well.

Remark 1. It may be of theoretical interest to compute the Fishburn imputations of some
well-known models of stochastic choice. To illustrate, take any two real injective maps on
𝑋 and any map 𝜃 : 𝔛 → (0, 1). The stochastic choice function P on 𝑋 where

P(𝑥, 𝑆) := 𝜃 (𝑆)1argmax𝑢 (𝑆) (𝑥) + (1 − 𝜃 (𝑆))1argmax 𝑣 (𝑆) (𝑥)

for any 𝑥 ∈ 𝑆 and 𝑆 ∈ 𝔛, is said to be a dual random utility model; this model has been
nicely characterized by Manzini and Mariotti (2018). For any 𝑆 ∈ 𝔛 and any injection
𝑓 : 𝑋 → R, let 𝑥 (𝑓 , 𝑆) stand for the (unique) maximizer of 𝑓 in 𝑆. Then, the Fishburn
imputation of P (with level of selectivity 𝜆) is readily computed. Assuming wlog. 𝜃 (𝑆) ≥ 1

2 ,

then Ψ𝜆 (P) (𝑆) = {𝑥 (𝑢, 𝑆)} when 1−𝜃 (𝑆)
𝜃 (𝑆) < 𝜆 and Ψ𝜆 (P) (𝑆) = {𝑥 (𝑢, 𝑆), 𝑥 (𝑣, 𝑆)} otherwise. □

In this paper we mostly work with Fishburn imputations, but there are several other
types of choice imputations that may be useful in empirical work. For good measure, we
next present a selection of such alternatives.

Example 4. Consider the map Ψ : scf (𝑋 ) → cc(𝑋 ) with

Ψ(P) (𝑆) := {𝑥 ∈ 𝑆 : P(𝑥, 𝑆) ≥ min{𝜃,𝑀P(𝑆)}} , 𝑆 ∈ 𝔛

for some 𝜃 ∈ (0, 1). In any menu 𝑆, the map Ψ includes an item as a “choice” if either that
item is chosen with a probability above a threshold 𝜃 , or if it is the item with the maximum
12It is thus easy to see that this criterion, like most models of stochastic choice, is not immune to adding
duplicates into amenu. For example, consider𝑥,𝑦,𝑦′ where𝑦 and𝑦′ are duplicates, and suppose P(𝑥, {𝑥,𝑦}) =
0.2, P(𝑦, {𝑥,𝑦}) = 0.8, while P(𝑥, {𝑥,𝑦,𝑦′}) = 0.2, P(𝑦, {𝑥,𝑦,𝑦′}) = 0.4, and P(𝑦′, {𝑥,𝑦,𝑦′}) = 0.4 (which
may be natural since 𝑦 and 𝑦′ are duplicates). Then for certain values of 𝜆 we have 𝑥 ∈ 𝐶P,𝜆 ({𝑥,𝑦}) but
𝑥 ∉ 𝐶P,𝜆 ({𝑥,𝑦,𝑦′}), that is, adding duplicates affects the selection. Depending on one’s view of mistakes, this
may be a feature or a concern. In either case, this is shared by most models on stochastic choice data, and
simply calls for the careful identification of choice items.
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likelihood of being chosen in 𝑆 . Ψ is then a choice imputation, but it is not a Fishburn
imputation.

Example 5. Define 𝑐P(𝑆) := 𝐶P,1(𝑆) ∪𝐶P,1(𝑆\𝐶P,1(𝑆)) (with the convention that𝐶P,1(∅) :=
∅) for any 𝑆 ∈ 𝔛 and P ∈ scf (𝑋 ). (Thus, 𝑐P(𝑆) contains all alternatives in 𝑆 that are the
most probably chosen in 𝑆 as well as those that are second most probably chosen.) The map
Ψ defined on scf (𝑋 ) by Ψ(P) := 𝑐P is a choice imputation (but again, it is not a Fishburn
imputation).

Example 6. Let 𝜆 : N→ (0, 1] be any non-constant decreasing function, and consider the
map Ψ : scf (𝑋 ) → cc(𝑋 ) with

Ψ(P) (𝑆) := {𝑥 ∈ 𝑆 : P(𝑥, 𝑆) ≥ 𝜆( |𝑆 |)𝑀P(𝑆)} , 𝑆 ∈ 𝔛.

This is a choice imputation that acts over menus with the same size just like a Fishburn
imputation, but it may use different factors over menus with different cardinalities. It may
be useful if one subscribes to the view that it gets harder to achieve a given fraction of the
maximum likelihood in larger menus.13

2.2 Foundations

Recall that in the first step of our analysis we presume that the actual stochastic choice
function P of a given individual is known. (Or, equivalently, in this first step we suppose
that the data is perfectly informative about the true stochastic choice function of the decision
maker.) As such, our problem is to decide which sort of choice imputation to use in order
to transform P into a deterministic choice correspondence.
It is plain that every choice imputation has its advantages and disadvantages. We thus

start our analysis by looking at axiomatic ways of evaluating such procedures in the abstract.
The postulates below are imposed on an arbitrarily given choice imputation Ψ; for ease of
notation, we denote the value of Ψ at P by 𝐶P.
13Suppose we set 𝜆 = 1

2 , and consider the two menus 𝑆 := {𝑥,𝑦} and 𝑇 := {𝑥, 𝑧1, ..., 𝑧6, 𝑦}. If P(𝑥, 𝑆) = 1
3

while P(𝑥,𝑇 ) = P(𝑧1,𝑇 ) = · · · = P(𝑧6,𝑇 ) = 0.1, we have P(𝑥, 𝑆) ≥ 1
2P(𝑦, 𝑆) and P(𝑥,𝑇 ) <

1
2P(𝑦,𝑇 ), so the

Fishburn imputation Ψ1/2 deems 𝑥 as a choice from 𝑆, but not from 𝑇, while one may argue that the latter
conclusion is not acceptable, and choose to use a factor less than 13 to work with in the context of menus that
contain more than two alternatives.
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Anonymity. We begin by positing that if the choice probability distributions of two indi-
viduals with stochastic choice functions P and Q over a menu 𝑆 are identical, then the value
of the choice correspondences we attribute to them should be equal to each other at 𝑆. This
seems like a reasonable property to impose on a choice imputation.

A. Anonymity. For every P,Q ∈ scf (𝑋 ) and 𝑆 ∈ 𝔛,

P(·, 𝑆) = Q(·, 𝑆) implies 𝐶P(𝑆) = 𝐶Q(𝑆).

A choice imputation that satisfies this property uses only the information about the
choice behavior of a person in a menu 𝑆 to infer her set of choices from that menu. While
it constitutes a natural starting point, it would not be suitable for a method of imputation
that looks at the choice behavior of an individual across all menus to decide how low a low
a choice probability in 𝑆 should be to count as a “mistake.”

Imputations for Pairwise Choices. Suppose that, for a stochastic choice function P on
𝑋, we have somehow deemed the choice probability P(𝑥, {𝑥,𝑦}) large enough to include
𝑥 in the choice set 𝐶P{𝑥,𝑦}. Let {𝑧,𝑤} be another menu, and suppose 𝑧 is primed to be
chosen from {𝑧,𝑤} even more frequently than 𝑥 is from {𝑥,𝑦}, that is, P(𝑧, {𝑧,𝑤}) ≥
P(𝑥, {𝑥,𝑦}). Since we have declared 𝑥 ∈ 𝐶P{𝑥,𝑦}, consistency demands that we also declare
𝑧 ∈ 𝐶P{𝑧,𝑤}. That is:

B. Monotonicity across Pairwise Choice Data. For every P ∈ scf (𝑋 ) and 𝑆,𝑇 ∈
𝔛2,

𝑥 ∈ 𝐶P(𝑆) and P(𝑧,𝑇 ) ≥ P(𝑥, 𝑆) imply 𝑧 ∈ 𝐶P(𝑇 ).

We next consider a fairly weak form of continuity.

C. Continuity on Pairwise Menus. For every P, P1, P2, ... ∈ scf (𝑋 ) and 𝑆 ∈ 𝔛2

with 𝑆 = 𝐶P𝑘 (𝑆) for each 𝑘 = 1, 2, ...,

𝑚P𝑘 (𝑆) →𝑚P(𝑆) > 0 implies 𝑆 = 𝐶P(𝑆).

In words, given a doubleton menu 𝑆, if the choice sets imputed from each term of a
sequence of stochastic choice functions include both elements of 𝑆, and if the associated
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smallest choice probabilities converge to a strictly positive value, then both elements of 𝑆
should be included in the set of choices from 𝑆 in the limit as well.14

The properties A, B and C are so basic that it seems unlikely they would impose much
discipline on choice imputations. However, our first result shows that these conditions pin
down the structure of a choice imputation on primitive choice problems up to a single pa-
rameter.

Theorem 1. Let Ψ : scf (𝑋 ) → cc(𝑋 ) be a choice imputation that satisfies the
properties A, B, and C. Then, there exists a (unique) 𝜆 ∈ [0, 1] such that

Ψ(P) (𝑆) = 𝐶P,𝜆 (𝑆) for every 𝑆 ∈ 𝔛2 and P ∈ scf (𝑋 ).

In other words, every choice imputation that satisfies properties A, B and C must act
like a Fishburn imputation on pairwise choice problems. This is noteworthy, because a great
majority of choice experiments in the literature are about individual preferences and thus
present the subjects only with pairwise choice problems. Theorem 1 gives a fairly strong
reason for using Fishburn imputations for inferring the preferences of the subjects in such
experiments.

Independence of Irrelevant Alternatives. While the properties A, B and C restrain the
behavior of a choice imputation with respect to pairwise choice situations, the following
property controls that behavior on arbitrary menus, and it does this by forcing the imputa-
tion be consistent with that used for pairwise choice problems.
To illustrate, suppose a person chooses 𝑥 from a menu 𝑆 with probability 0.2, while the

item she chooses from 𝑆 with the maximum likelihood is 𝑦, and that with probability 0.6.
Suppose we also know that this individual chooses 𝑥 against 𝑦 in pairwise comparisons 25
percent of the time, that is, P(𝑥, {𝑥,𝑦}) = .25 and P(𝑦, {𝑥,𝑦}) = .75.How should then𝐶P(𝑆)
relate to𝐶P{𝑥,𝑦}? Observe that we have chosen our numbers so that the relative probability
of choosing 𝑥 against 𝑦 in the set 𝑆 is the same as that in {𝑥,𝑦} (for .2

.6 = .25
.75). Thus, if we

wish to abide by the principle of Independence of Irrelevant Alternatives (as formulated by,
say, Luce, 1959), it would be natural to include 𝑥 in𝐶P(𝑆) if, and only if, 𝑥 ∈ 𝐶P{𝑥,𝑦}. This
principle maintains that an analyst may or may not find P(𝑥, 𝑆) too small to include 𝑥 in
14The condition 𝑚P (𝑆) > 0 is essential in the formulation of this property. For instance, if (𝑥𝑘 ) and (𝑦𝑘 )
are two sequences in 𝑋 such that P𝑘 (𝑥, {𝑥,𝑦}) = 1

𝑘
for each 𝑘, and P(𝑥, {𝑥,𝑦}) = 0, we do not wish 𝐶P{𝑥,𝑦}

to include 𝑥 (otherwise P ↦→ 𝐶P would not define a choice imputation; recall (1)).
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𝐶P(𝑆), but whatever is her decision in this regard, it should be the same in the context of
𝐶P{𝑥,𝑦}.

D. Independence of Irrelevant Alternatives. For every P ∈ scf (𝑋 ), 𝑆 ∈ 𝔛, and
𝑥,𝑦 ∈ 𝑆 such that P(𝑦, 𝑆) = 𝑀P(𝑆) and

P(𝑥, {𝑥,𝑦})
P(𝑦, {𝑥,𝑦}) =

P(𝑥, 𝑆)
P(𝑦, 𝑆) ,

we have 𝑥 ∈ 𝐶P(𝑆) iff 𝑥 ∈ 𝐶P{𝑥,𝑦}.

Independence of Irrelevant Alternatives type axioms (such as Luce’s Choice Axiom) are
much discussed in the literature on stochastic choice. They typically lead to ratio-scale rep-
resentations and easy-to-use formulae in making probabilistic computations. They rule out
various ways in which choices may be menu-dependent and are well-known to be sensitive
to the presence of perfectly substitutable alternatives. Having said that, it seems desirable
to explore the consequences of Property D before entertaining its relaxations that allow for
menu dependent methods of choice imputation.

Remark 2. The four postulates we have considered above are logically independent. In par-
ticular, any of the choice imputations presented in Examples 4, 5 and 6 satisfies properties
A, B and C, but not D. □

A Characterization Theorem. We are now ready to state ourmain characterization result.

Theorem 2. A choice imputation Ψ : scf (𝑋 ) → cc(𝑋 ) satisfies the properties
A, B, C, and D if, and only if, it is a Fishburn imputation, that is, there exists a
(unique) 𝜆 ∈ [0, 1] such that Ψ(P) = 𝐶P,𝜆 for every P ∈ scf (𝑋 ).

Our postulates thus characterize the family of Fishburn imputations completely. For
any choice imputation Ψ that satisfies these properties, there exists a unique 𝜆 ∈ [0, 1],
which we dub the level of selectivity, such that an item 𝑥 is included in 𝐶P(𝑆) iff it is chosen
with a probability at least as high as 𝜆 times the choice probability of an option in 𝑆 with
the maximum likelihood of being chosen, and this, for any menu 𝑆. As discussed above,
different levels of selectivity 𝜆 make the imputation more or less inclusive, and should be
chosen by the analyst according to the problem at hand.
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3 Imputation of Choice from Sample Data

We have so far acted as if P is known, and looked at methods of deducing a choice cor-
respondence from P. In reality, however, all we have is a data set that reports a person’s
choice frequencies per menu for a finite, and often fairly small, number of observations. We
must thus account for sampling errors when inferring one’s choice correspondence from her
empirical stochastic choice function. This section is devoted to this issue.
We begin with setting up the general statistical inference problem at hand. We then

confine our attention to inferring the behavior of a choice correspondence over pairwise
choice situations by means of a suitable hypothesis-testing procedure. We pay heed to this
special case because almost all repeated choice experiments in the literature use doubleton
menus, and the idea behind Fishburn imputations is particularly agreeable in that case
(Theorem 1). Moreover, we shall find that in this case our procedure has a closed-form, and
it is quite easy to implement. In the latter part of the section, we turn to the case of menus
of arbitrary size, and observe that much of what we are able to do with doubleton menus
can be extended to that case. However, by necessity, the associated test procedure is then
more complicated.

3.1 The General Hypothesis Testing Problem

To explain the nature of the statistical problem at hand formally, let 𝑆1, ..., 𝑆𝑚 be 𝑚 many
menus in 𝔛. For each 𝑖, suppose we have observed an individual make a choice from the
menu 𝑆𝑖 , 𝑛𝑖 many times. Then, the data at hand is in the form of realizations of the random
variables

𝐿𝑛𝑖 (𝑥, 𝑆𝑖) := the number of times 𝑥 is chosen in 𝑆𝑖 in 𝑛𝑖 observations

where 𝑥 ∈ 𝑆𝑖 and 𝑖 = 1, ...,𝑚. Our problem is to decide which elements 𝑥 of each 𝑆𝑖 should
be included among the choices from that menu, given the realization of these random vari-
ables. For each 𝑖, let ℓ𝑛𝑖 (·, 𝑆𝑖) := 𝑛−1𝑖 𝐿𝑛𝑖 (·, 𝑆𝑖), and note that every realization of ℓ𝑛𝑖 (·, 𝑆𝑖) is
a probability distribution over the contents of 𝑆𝑖, but this distribution may be a poor rep-
resentative of P(·, 𝑆𝑖), especially when the sample size 𝑛𝑖 is small. Thus, even if we have
decided which choice imputation Ψ to employ if P were known, approaching the problem
of eliciting the choices of the individual from the menu 𝑆𝑖 simply by applying Ψ at the given
realization of ℓ𝑛𝑖 (·, 𝑆𝑖) may not properly account for sampling errors.
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Let us enumerate 𝑆𝑖 as {𝑥𝑖,1, ..., 𝑥𝑖,𝑘𝑖 } for each 𝑖 = 1, ...,𝑚. In the abstract, once a certain
choice imputation Ψ is agreed upon, we are confronted with a general multiple-hypotheses
testing problem whose null hypotheses are

𝐻1,1 : 𝑥1,1 ∈ 𝐶P(𝑆1) · · · 𝐻1,𝑘1 : 𝑥1,𝑘1 ∈ 𝐶P(𝑆1)
· · · · · · · · ·

𝐻𝑚,1 : 𝑥𝑚,1 ∈ 𝐶P(𝑆𝑚) · · · 𝐻𝑚,𝑘𝑚 : 𝑥𝑚,𝑘𝑚 ∈ 𝐶P(𝑆𝑚)
(2)

where, of course, 𝐶P = Ψ(P) (·) .15 Clearly, we need to make a sampling assumption to
deal with this problem. We adopt the following standard postulate in this regard, which is
maintained in the remainder of the paper.

Assumption 1. The choice trials are independent and the probability of choice
of any alternative in a menu is the same in each trial.

In addition, we need to specify the level of control we wish to impose on the family-wise
error rate (FWER) or the false discovery rate (FDR) for the problem (2).16 Let us denote this
level by 𝛼, which is usually set as .05 or .1. (When there is only one hypothesis, 𝛼 is none
other than the level of significance of the test.) Once this is done, we have all the ingredients
we need, namely, a realization of each 𝐿𝑛𝑖 (·, 𝑆𝑖) (the choice data from each menu in the
sample), Ψ (the method of imputation) and 𝛼 (the level of control), to impute the value of
the choice correspondence at each 𝑆𝑖 statistically. Put precisely, given these ingredients and
the choice data, the set of choices of the person from each menu 𝑆𝑖 is determined simply as
the set of all 𝑥𝑖, 𝑗 (where 𝑗 = 1, ..., 𝑘𝑖) for which 𝐻𝑖, 𝑗 is not rejected at the control level 𝛼 .
In view of the analysis presented in Section 2, we study this problem in more concrete

terms by choosing Ψ to be a Fishburn imputation. Thus, for a fixed level of selectivity
𝜆 ∈ [0, 1] to be chosen by the analyst, our multiple-hypotheses testing problem is

𝐻1,1 : P(𝑥1,1, 𝑆1) ≥ 𝜆𝑀P(𝑆1), · · · 𝐻1,𝑘1 : P(𝑥1,𝑘1, 𝑆1) ≥ 𝜆𝑀P(𝑆1)
· · · · · · · · ·

𝐻𝑚,1 : P(𝑥𝑚,1, 𝑆𝑚) ≥ 𝜆𝑀P(𝑆𝑚), · · · 𝐻𝑚,𝑘𝑚 : P(𝑥𝑚,𝑘𝑚 , 𝑆𝑚) ≥ 𝜆𝑀P(𝑆𝑚).
(3)

Its simultaneous nature makes this testing problem nontrivial. One can of course disregard
15Depending on the size of the menus, and the context, one may be able to reduce the number of hypotheses
here to enhance the testing procedure. See, for instance, Section 3.2.3 below.
16All terms we use in this paper that pertain to multiple hypotheses testing are defined and explained in
detail in Lehmann and Romano (2005, Chapter 9).
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the issue of multiplicity, and instead test each hypothesis in (3) in isolation at the signifi-
cance level 𝛼. Unfortunately, as is well known, under this method the probability of false
rejections rapidly increase with the total number of the tests (i.e., 𝑘1 + · · · + 𝑘𝑚).17 Perhaps
the simplest resolution of this issue is by using the so-called Bonferroni correction, which
means we test each hypothesis at the significance level 𝛼/(𝑘1 + · · · + 𝑘𝑚). While this proce-
dure ensures that FWER is at most 𝛼, its ability to reject any of the null hypotheses is low, so
it is rarely used. Instead, it is common to adopt a step-down testing approach for this pur-
pose, such as the Holm procedure (of Holm, 1979) which also controls FWER at level 𝛼, or
the Benjamini-Hochberg procedure (of Benjamini and Hochberg, 1995) which controls FDR
(but not necessarily FWER) at level 𝛼 . In what follows, we shall adopt the latter procedure
due to its superior ability of rejecting null hypotheses.
Regardless of the procedure, however, one always runs into unacceptably high rates of

acceptance of the null hypotheses when 𝑘1 + · · · + 𝑘𝑚 is large. This is an empirical issue
and there is not much one can do about it at a theoretical level. Having said this, in the
present context, there is at least one simplification that would reduce the multiplicity of the
problem (3) to some extent:

Assumption 2. For each 𝑖, any element of argmax𝐿𝑛𝑖 (·, 𝑆𝑖) is included in the
choice set at 𝑆, and hence all hypotheses in (3) corresponding to these elements
are deleted from the system.

We thus always qualify a most frequently chosen alternative in a menu as a “choice” from
that menu. Obviously, if one wishes to infer nonempty-valued choice correspondences in
an experiment, this assumption is necessary. Even when the researcher may be content
with designating ∅ as the value of the choice correspondence at a menu (perhaps because
the observed choices do not support any particular alternative), Assumption 2 is basically
unexceptionable for menus of small size (which is, again, the relevant case for choice ex-
periments in practice). For instance, if 𝑆 is a menu with two elements, and an alternative
𝑦 in 𝑆 is chosen at least 50% of the time, throughout the observation period, it would be
absurd not to include 𝑦 as a choice in 𝑆. Similarly, if 𝑆 contains three elements, and 𝑦 is
chosen most frequently in 𝑆 , it is only natural to include 𝑦 in the choice set at 𝑆. We will
17For instance, if we have two independent tests, the upper bound for (i.e., the control of) the probability
of at least one false rejection is 2𝛼 −𝛼2, for three independent tests this bound is 3𝛼 − 3𝛼2 +𝛼3 and so on. To
get a better sense of the problem, set 𝛼 = .05. Then, if we have 5 independent tests to perform, the probability
of at least one false rejection would be controlled at .23. With 50 independent tests, this number increases to
.92. See Lehmann and Romano (2005, pp. 348-349).
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see below that in addition to its straightforward appeal, Assumption 2 may at times achieve
a substantial simplification of the test procedure. In particular, it allows us to reduce the
multiplicity of the tests in (3) by at least𝑚 hypotheses.18

The next two subsections are devoted to the analysis of the tests (3) under the Assump-
tions 1 and 2. But before we move to this analysis, it may be useful to take stock. The overall
approach we propose in this paper decomposes the elicitation of a choice correspondence
(from data) into two stages. First, a decision is made as to which choice imputation one
would use if P were observable. In particular, if one is set on using a Fishburn imputation, a
value for the factor 𝜆 is chosen (but of course one may choose to carry out the procedure in
terms of several choices for 𝜆). Second, one deals with issues that arise due to the finiteness
of data sets by means of a statistical procedure that accounts for sampling errors. These
two stages, and hence the choices for 𝜆 and 𝛼 are kept separate as they pertain to different
domains and are conceptually distinct.
An alternative approach would be to use the realization of ℓ𝑛 itself as a stochastic choice

function to compute Ψ(ℓ𝑛) (𝑆) directly for a suitable Ψ. Indeed, one can show that this is pre-
cisely what the maximum likelihood estimation would entail, at least in the case of pairwise
choice situations. However, while the simplicity of this approach is surely an advantage, it
is simply too coarse to account for sampling errors properly.

3.2 The Case of Pairwise Choice Situations

We now examine the multiple testing problem (3) in the special, but empirically common,
case of pairwise choice situations. As we have discussed earlier, this case is particularly
important, because it is the one that captures the estimation of preferences.

3.2.1 Inferring the Set of Choices from a Single Menu

Let us begin with the simplest case of inferring the value of a choice correspondence at a
single doubleton menu. We thus fix an arbitrary 𝑆 ∈ 𝔛2, which we enumerate as {𝑥,𝑦}, and
suppose 𝜆 and 𝛼 are chosen. Our problem is to decide whether or not we should declare
either 𝑥 or 𝑦 as a choice from the menu 𝑆 given the realizations of 𝐿𝑛 (𝑥, 𝑆) and 𝐿𝑛 (𝑦, 𝑆) that
pertains to a particular decision maker, where 𝑛 is the number of times we have observed
18To wit, this means that the Bonferroni correction would then be at most 𝛼/(𝑘1 + · · · + 𝑘𝑚 −𝑚) instead
of 𝛼/(𝑘1 + · · · + 𝑘𝑚), alleviating the overcorrection entailed by that procedure. The same observation applies
also to all step-down multiple-hypotheses testing procedures.
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this person make a choice from 𝑆. In what follows, we denote the actual probability that 𝑥
is chosen from 𝑆 by 𝜋, that is, 𝜋 := P(𝑥, 𝑆). Moreover, relabelling if necessary, we assume
that 𝑦 is chosen from 𝑆 more frequently than 𝑥 in the data, that is, 𝐿𝑛 (𝑥, 𝑆) ≤ 𝐿𝑛 (𝑦, 𝑆).
In this setup, (3) takes a very simple form:

𝐻𝑥 : 𝜋 ≥ 𝜆𝑀P(𝑆) and 𝐻𝑦 : 1 − 𝜋 ≥ 𝜆𝑀P(𝑆).

Besides, by Assumption 2, this reduces to a single hypothesis test with the null hypothesis
𝐻𝑥 : 𝜋 ≥ 𝜆𝑀P(𝑆). On the other hand, a routine manipulation shows that 𝜋 ≥ 𝜆𝑀P(𝑆) iff
𝜋 ≥ 𝜆

1+𝜆 . Consequently, our null hypothesis in this instance can be stated simply as:

𝐻 : 𝜋 ≥ 𝜆
1+𝜆 .

Now, under Assumption 1, 𝐿𝑛 (𝑥, 𝑆) is binomially distributed with parameters 𝑛 and 𝜋.
Using this fact, we wish to obtain a threshold test of the form: Reject 𝐻 if the realization
of 𝐿𝑛 (𝑥, 𝑆) is smaller than some suitably chosen nonnegative integer. To this end, we recall
the following elementary, and well-known, property of the binomial distribution.

Lemma 3. Let 𝑛 be a positive integer, 𝜃 ∈ {0, ..., 𝑛}, and 𝛾1, 𝛾2 ∈ [0, 1] . For any
two binomially distributed random variables 𝑢 and 𝑣 with parameters 𝑛 and
𝛾1, and 𝑛 and 𝛾2, respectively, we have Prob(𝑣 ≤ 𝜃 ) < Prob(𝑢 ≤ 𝜃 ) whenever
𝛾1 < 𝛾2.

For the null hypothesis 𝜋 = 𝑎, where 𝑎 is some number larger than 𝜆
1+𝜆 , the 𝑝-value is

Prob(𝑢 ≤ 𝐿𝑛 (𝑥, 𝑆)) where 𝑢 ∼ Binom(𝑛, 𝑎). Lemma 3 says that the largest of these 𝑝-values
over all 𝑎 ≥ 𝜆

1+𝜆 is obtained precisely when 𝑎 = 𝜆
1+𝜆 . In other words, all of these 𝑝-values

are less than 𝛼 iff the 𝑝-value associated with the null hypothesis

𝐻 : 𝜋 = 𝜆
1+𝜆

is less than 𝛼. Put precisely, given the realization of 𝐿𝑛 (𝑥, 𝑆), this 𝑝-value is given as

𝑝 := Prob(𝑢 ≤ 𝐿𝑛 (𝑥, 𝑆)) where 𝑢 ∼ Binom(𝑛, 𝜆
1+𝜆 ). (4)

Then, where 𝑐𝜆,𝛼 (𝑆) denotes the set of inferred “choices” from 𝑆, our procedure simply says:

Do not include 𝑥 in 𝑐𝜆,𝛼 (𝑆) if 𝑝 ≤ 𝛼 for the realization of 𝐿𝑛 (𝑥, 𝑆).
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(We do not make the dependence of 𝑐𝜆,𝛼 (𝑆) on 𝑛 here only not to clutter the notation.) That
is, given the observed value of 𝐿𝑛 (𝑥, 𝑆), our inferred choice set at 𝑆 is

𝑐𝜆,𝛼 (𝑆) =
{

{𝑥,𝑦}, if Prob(𝑢 ≤ 𝐿𝑛 (𝑥, 𝑆)) > 𝛼

{𝑦}, otherwise,
(5)

where 𝑢 is the binomially distributed random variable with parameters 𝑛 and 𝜆
1+𝜆 .

Alternatively, given 𝜆 and 𝛼, let 𝑤𝜆,𝑛 be the maximum number of times we need to
observe 𝑥 being chosen so as to reject the hypothesis that 𝑥 should be included in 𝑐𝜆,𝛼 (𝑆).
That is,

𝑤𝜆,𝑛 := max {𝜃 ∈ {0, ..., 𝑛} : Prob(𝑢 ≤ 𝜃 ) ≤ 𝛼} (6)

where 𝑢 ∼ Binom(𝑛, 𝜆
1+𝜆 ). Then,

𝑐𝜆,𝛼 (𝑆) =
{

{𝑥,𝑦}, if 𝐿𝑛 (𝑥, 𝑆) > 𝑤𝜆,𝑛

{𝑦}, otherwise.
(7)

The 𝑝-value in (4), as well as the threshold𝑤𝜆,𝑛, and hence 𝑐𝜆,𝛼 (𝑆), are very easy to compute
in practice.

Remark 3. With probability at least 1 − 𝛼, the procedure above infers a choice set that
contains the “true” choices of the subject. That is,

Prob(𝐶𝜆,P(𝑆) ⊆ 𝑐𝜆,𝛼 (𝑆)) > 1 − 𝛼. (8)

Indeed, by (5), the probability of the event “𝐶𝜆,P(𝑆) ⊈ 𝑐𝜆,𝛼 (𝑆)” is Prob(𝐿𝑛 (𝑥, 𝑆) ∈ {0, ...,𝑤𝜆,𝑛})
(i.e., the probability that 𝑥 is not included in 𝑐𝜆,𝛼 (𝑆))when 1−𝜋 = P(𝑦, 𝑆) < 𝜆 (whichmeans
𝑥 is in𝐶𝜆,P(𝑆)). But 𝐿𝑛 (𝑥, 𝑆) ∼ Binom(𝑛, 𝜋) while 1− 𝜋 < 𝜆 implies 𝜋 > 1

1+𝜆 . By Lemma 3,
therefore, we have

Prob(𝐿𝑛 (𝑥, 𝑆) ≤ 𝑤𝜆,𝑛) < Prob(𝑢 ≤ 𝑤𝜆,𝑛) ≤ 𝛼

where 𝑢 ∼ Binom(𝑛, 11+𝜆 ) and 1 − 𝜋 < 𝜆, which proves (8). □

3.2.2 Discussion

Some other features of the test statistic 𝑤𝜆,𝑛 are worth emphasizing. It is easy to compute
that, when 𝑛 = 4, the 𝑝-value in (4) exceeds 𝛼 := 0.05 for all 𝜆s considered, which means
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that each member of the doubleton 𝑆 is declared as “chosen.” Put another way, if we have
4 repetitions or less, and the level of significance is set at .05, the choice of the level of
selectivity 𝜆 is irrelevant and we include each item, even if one of these items is never
chosen. Similarly, when 𝑛 ≤ 7, then Prob(𝑢 ≤ 1) > 0.05 for all 𝜆s considered. Thus, any
time we have at most 7 repetitions, and the level of significance is set at .05, the choice of 𝜆
is irrelevant and we include any item chosen at least once out 7 times. These observations
illustrate how our criterion tends to be inclusive in the face of (relatively) small sample.
This is to be expected, because we include an item as a choice unless we can reject with
sufficient confidence that it should be excluded. If we observe only 7 repetitions, we cannot
reject that an option chosen only once out of seven times; this option may in fact have a
probability of choice as high as 50 percent (so this item is included in the choice set even
for 𝜆 = 1.)
The construction becomes more selective when the sample size is larger. To illustrate,

the following table calculates 𝑤𝜆,20 and 𝑤𝜆,50 for various choices for 𝜆 when 𝛼 := 0.05:

𝜆 0.1 0.3 0.5 0.7 0.9 1
𝑤𝜆,20 0 2 3 5 6 6
𝑤𝜆,50 1 7 11 15 18 19

In particular, an item chosen 6 times out of 20 (so that its relative choice frequency is 30%)
is always included in the choice set for any 𝜆. But an item chosen 3 times out of 20 (so
that its relative choice frequency is 15%) is included for 𝜆 ≤ 0.5, but excluded for 𝜆 ≥ 0.7.
On the other hand, an item chosen 19 out of 50 times is included in the choice set (from
a doubleton menu), even for 𝜆 = 1. But if an item is chosen 18 times, then it is excluded
from the choice set when 𝜆 = 1. When 𝑛 = 50 and 𝜆 ≤ 0.1, every item chosen at least once
is included in the choice set.
These examples suggest a few properties of the threshold 𝑤𝜆,𝑛 as a function of 𝜆 and

𝑛. First, and this is a consequence of the fact that the the cdf of the binomial distribution
with parameters 𝑛 and 𝑝 is decreasing in 𝑛, 𝑤𝜆,𝑛 is increasing in 𝑛. By contrast,

𝑤𝜆,𝑛

𝑛
is

decreasing in 𝑛 only on average. Moreover, 𝑤𝜆,𝑛

𝑛
converges (from below) to 𝜆

1+𝜆 as 𝑛 tends to
infinity, which is the target threshold. When 𝑛 is small, it is harder to confidently reject the
hypothesis that the true underlying frequency is above a threshold, making our criterion
more inclusive. As 𝑛 grows, however, the small-sample nature of the data becomes less
problematic, and the sample threshold converges to the one we would have with ideal data.
On the other hand, it is plain from Lemma 3 and the definition of𝑤𝜆,𝑛 that this function is
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increasing in the level of selectivity 𝜆, that is, we have𝑤𝜆,𝑛 ≤ 𝑤𝜆′,𝑛 whenever 0 ≤ 𝜆 ≤ 𝜆′ ≤ 1
(for any 𝑛). In particular, 𝑤𝜆,𝑛 ≤ 𝑤1,𝑛 for all 𝜆 ∈ [0, 1] and 𝑛 ∈ N. This is, of course, in
the nature of things. As 𝜆 increases, it becomes harder to be admitted as a choice, and the
estimated choice correspondence gets “thinner.” The hardest test obtains at 𝜆 = 1, which
yields the most exclusive (empirical) choice correspondence.

Remark 4. Describing the exact nature of the function 𝑤𝜆,𝑛 is not a trivial task, but it can
be shown that this function is increasing in 𝑛, and it satisfies 𝑤𝜆,𝑛

𝑛
≤ 𝜆
1+𝜆 for all 𝜆 ∈ [0, 1]

and 𝛼 ∈ [0, 14 ] for sufficiently large 𝑛. (This is not an asymptotic result; it holds as soon
as 𝑛 > 1+𝜆

𝜆
.) Finally, and perhaps most important, we have lim 𝑤𝜆,𝑛

𝑛
= 𝜆
1+𝜆 , that is, our test

statistic 𝑤𝜆,𝑛

𝑛
is a consistent estimator of the true threshold 𝜆

1+𝜆 regardless of the choice of 𝜆
and 𝛼. (Proofs are given in the Appendix.) □

Remark 5. Experimental datasets are often quite small, so one cannot do better than ap-
plying the above small-sample procedure as stated. Yet, in other cases, researchers may
have access to larger datasets—for example, marketing firms in the digital age may gain
access to detailed observations of purchasing behaviors in frequent repetitions. If 𝑛 is large
and 𝜆 is not small, one can approximately determine the threshold 𝑤𝜆,𝑛 using the normal
distribution. A long-standing convention in statistics is that one can safely approximate a
binomial distribution with parameters 𝑛 and 𝑞 with the normal distribution provided that
𝑛𝑞 > 5. Thus, in the present setup, so long as 𝑛𝜆

1+𝜆 > 5 holds, we have

𝛼 = Prob(𝐿𝑛 (𝑥, 𝑆) ≤ 𝑤𝜆,𝑛) ≈ Prob
(
ℓ𝑛 (𝑥, 𝑆) ≤ 𝑤𝜆,𝑛+0.5

𝑛

)
≈ Φ

©­­«
𝑤𝜆,𝑛+0.5

𝑛
− 𝜆
1+𝜆√︃

𝜆
𝑛(1+𝜆)2

ª®®¬
by continuity correction. (Here Φ stands for the standard normal (cumulative) distribution
function.) From this approximation, we readily get a normal-based approximation for the
critical value we are after as

𝑤𝜆,𝑛 ≈ 𝑛 𝜆
1+𝜆

(
1 + Φ−1(𝛼)

√
𝑛𝜆

)
− 0.5.

□

23



3.2.3 Inferring a Choice Correspondence over Doubleton Menus

We now turn to the problem of inferring one’s choice correspondence on any given collection
of doubleton menus. Let us then fix any𝑚 ∈ N and any 𝑆1, ..., 𝑆𝑚 ∈ 𝔛2, and suppose 𝜆 and
𝛼 are chosen. Let us enumerate 𝑆𝑖 as {𝑥𝑖, 𝑦𝑖} for each 𝑖 = 1, ...,𝑚, and denote the number
of times we have observed the subject choose from the menu 𝑆𝑖 by 𝑛𝑖 . In what follows,
we set 𝜋𝑖 := P(𝑥𝑖, 𝑆𝑖), and relabelling if necessary, assume 𝐿𝑛𝑖 (𝑥𝑖, 𝑆𝑖) ≤ 𝐿𝑛𝑖 (𝑦𝑖, 𝑆𝑖) for each
𝑖 = 1, ...,𝑚.
In this case, our 2𝑚-hypotheses testing problem (3) is:

𝐻𝑥𝑖 : 𝜋𝑖 ≥ 𝜆𝑀P(𝑆𝑖), 𝑖 = 1, ...,𝑚 and 𝐻𝑦𝑖 : 1 − 𝜋 ≥ 𝜆𝑀P(𝑆𝑖), 𝑖 = 1, ...,𝑚.

By Assumption 2, however, this reduces to the simpler𝑚-hypotheses problem

𝐻1 : 𝜋1 ≥ 𝜆𝑀P(𝑆1) · · · 𝐻𝑚 : 𝜋𝑚 ≥ 𝜆𝑀P(𝑆𝑚). (9)

In addition, as in Section 3.2.1, we may invoke Lemma 3 to further simplify our problem
as:

𝐻1 : 𝜋1 = 𝜆
1+𝜆 · · · 𝐻𝑚 : 𝜋𝑚 = 𝜆

1+𝜆 .

We have already computed the 𝑝-values for each of these hypotheses in Section 3.2.1: For
each 𝑖 = 1, ...,𝑚, given the realization of 𝐿𝑛𝑖 (𝑥𝑖, 𝑆𝑖), the 𝑝-value of the hypothesis 𝐻𝑖 is given
as

𝑝𝑖 := Prob(𝑢 ≤ 𝐿𝑛𝑖 (𝑥𝑖, 𝑆𝑖)) where 𝑢 ∼ Binom(𝑛𝑖, 𝜆
1+𝜆 ).

Let us now order these 𝑝-values from smallest to the largest as

𝑝 (1) ≤ · · · ≤ 𝑝 (𝑚) .

Next, we define
𝑖∗ := max

{
𝑖 ∈ {1, ...,𝑚} : 𝑝 (𝑖) ≤ 𝑖

𝑚
𝛼
}
,

provided that there is at least one 𝑖 ∈ {1, ...,𝑚} with 𝑝 (𝑖) ≤ 𝑖
𝑚
𝛼, and set 𝑖∗ := 0 otherwise.

The Benjamini-Hochberg procedure (with the FDR control level 𝛼) maintains that we accept
all hyoptheses in (9) if 𝑖∗ = 0, and

reject 𝐻(1), ..., 𝐻(𝑖∗) and accept 𝐻(𝑖∗+1), ..., 𝐻(𝑚)
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if 1 ≤ 𝑖∗ < 𝑚, and reject all hypotheses in (9) if 𝑖∗ =𝑚. As a result, we obtain

𝑐𝜆,𝛼 (𝑆 (𝑖)) =
{

{𝑥𝑖, 𝑦𝑖}, if 𝑖 > 𝑖∗

{𝑦𝑖}, otherwise,

which completely describes the inferred choice correspondence on the domain {𝑆1, ..., 𝑆𝑚}.
The results reported in the application of Section 4 are obtained by means of this method.

3.3 The Case of Arbitrary Choice Situations

3.3.1 Testing if a Particular Alternative is a Choice

Let us now take an arbitrary menu 𝑆 ∈ 𝔛𝑘 where 𝑘 is any integer with 𝑘 ≥ 3, and suppose
again that 𝜆 and 𝛼 are chosen. Let us enumerate 𝑆 as {𝑥1, ..., 𝑥𝑘}, and simplify the notation
by setting

𝜋𝑖 := P(𝑥𝑖, 𝑆) and L𝑖 := 𝐿𝑛 (𝑥𝑖, 𝑆), 𝑖 = 1, ..., 𝑘,

where 𝑛 is the number of times we have observed this person make a choice from 𝑆. Thus,
𝜋𝑖 is the (unknown) probability of the agent choosing 𝑥𝑖 from 𝑆 , while L𝑖 is the number of
times the individual has been observed to choose the item 𝑥𝑖 from 𝑆 in a choice experiment
that is repeated 𝑛 times. Obviously, (𝜋1, ..., 𝜋𝑘) belongs to the (𝑘 − 1)-dimensional unit
simplex, while L1 + · · · + L𝑘 = 𝑛. Moreover, by Assumption 1, we have

Prob(L1 = 𝑎1, ...,L𝑘 = 𝑎𝑘) =
𝑛!

𝑎1! · · · 𝑎𝑘 !
𝜋
𝑎1
1 · · · 𝜋𝑎𝑘

𝑘

where (𝑎1, ..., 𝑎𝑘) ∈ {0, ..., 𝑛}𝑘 and 𝑎1 + · · · +𝑎𝑘 = 𝑛. Thus, the distribution of (L1, ...,L𝑘) is
multinomial with parameters 𝑛 and 𝜋1, ..., 𝜋𝑘 (but note that this distribution is singular in
the sense that the covariance matrix of (L1, ...,L𝑘) is of rank 𝑘 − 1, due to the restriction
L1+···+L𝑘 = 𝑛). Consequently, as proved in Chapter 35 of Johnson, Kotz and Balakrishnan
(1997), we have:

Lemma 4. (a) L1 is binomially distributed with parameters 𝑛 and 𝜋1;

(b) If 𝜋1 = 1, then L1 = 𝑛 and L2 = · · · = L𝑘 = 0 almost surely. If 𝜋1 < 1,
then for any (𝑎1, ..., 𝑎𝑘) ∈ {0, ..., 𝑛}𝑘 with 𝑎1 + · · · + 𝑎𝑘 = 𝑛,

Prob(L2 = 𝑎2, ...,L𝑘 = 𝑎𝑘 | L1 = 𝑎1) =
(𝑛 − 𝑎1)!
𝑎2! · · · 𝑎𝑘 !

𝑘∏
𝑖=2

(
𝜋𝑖

1 − 𝜋1

)𝑎𝑖
;
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that is, conditional on L1 = 𝑎1, (L2, ...,L𝑘) is multinomially distributed with
parameters 𝑛 − 𝑎1 and 𝜋2

1−𝜋1 , ...,
𝜋𝑘
1−𝜋1 .

Our goal now is to find a 𝑝-value for the hypothesis that a particular member of 𝑆 is
a choice for the subject individual from that menu. For concreteness, but without loss of
generality, we study this hypothesis for the alternative 𝑥1. Formally, then, our null hypothesis
is

𝐻 : 𝜋1 ≥ 𝜆max{𝜋1, ..., 𝜋𝑘}.

If 𝜆 = 0, then the problem is a simple hypothesis problem, so we do not have to elaborate on
it here. In what follows, then, we assume 𝜆 > 0. As in the case of pairwise choice situations,
it is enough to test for equality here, so we write this hypothesis as

𝐻 : 𝑛𝜋1 = 𝜆max{𝑛𝜋2, ..., 𝑛𝜋𝑘}. (10)

To obtain the 𝑝-value we are after, and the associated threshold test, we consider the random
variable

𝑉𝑎1 := L2 ∨ · · · ∨ L𝑘

conditional on L1 = 𝑎1, where 𝑎1 ∈ {0, ..., 𝑛}. In words, 𝑉𝑎1 is the maximum value of the
random variablesL2, ...,L𝑘 given that 𝑥1 is chosen from 𝑆 exactly 𝑎1many times. By Lemma
4,

Prob(𝑉𝑎1 < 𝑣) = Prob(L2 < 𝑣, ...,L𝑘 < 𝑣 | L1 = 𝑎1)

=
∑︁

(𝑎2,...,𝑎𝑘 )∈𝑆 (𝑣;𝑎1)

(𝑛 − 𝑎1)!
𝑎2! · · · 𝑎𝑘 !

𝑘∏
𝑖=2

(
𝜋𝑖

1 − 𝜋1

)𝑎𝑖
where 𝑆 (𝑣;𝑎1) is the set of all (𝑘 − 1)-vectors (𝑎2, ..., 𝑎𝑘) of nonnegative integers such that
𝑎𝑖 < 𝑣 for each 𝑖 = 2, ..., 𝑘, and 𝑎2 + · · · + 𝑎𝑘 = 𝑛 − 𝑎1.
We now define our test statistic (that depends on the chosen 𝜆) as

𝑊𝜆 := L1 − 𝜆 (L2 ∨ · · · ∨ L𝑘) , (11)

and note that this is a simple random variable whose (finite) range we denote by rng(𝑊𝜆).19

19To be precise, let 𝐽0 := {0}, and for any positive integer 𝑁, set 𝐽𝑁 := {𝑁, 𝑁 − 1, ..., ⌊𝑁
𝑘
⌋}\{0}. Then,

rng(𝑊𝜆) is contained within the finite set
⋃𝑛

𝑖=0 (𝑖 − 𝜆𝐽𝑛−𝑖 ).
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The 𝑝-value that we are after is thus given as

𝑝 = Prob
(
𝑊𝜆 ≤ 𝐿𝑛 (𝑥1, 𝑆) − 𝜆 max

𝑖=2,...,𝑘
𝐿𝑛 (𝑥𝑖, 𝑆)

)
. (12)

Of course, to compute this value, we need to find the distribution of𝑊𝜆 . To this end, note
that

Prob(𝑊𝜆 ≤ 𝑤) = 1 − Prob(𝑊𝜆 > 𝑤)
= 1 − Prob(L2 ∨ · · · ∨ L𝑘 < 1

𝜆
(L1 −𝑤))

= 1 −
𝑛∑︁

𝑎1=0

Prob(𝑉𝑎1 < 1
𝜆
(L1 −𝑤) | L1 = 𝑎1)Prob(L1 = 𝑎1)

= 1 −
𝑛∑︁

𝑎1=0

©­­«
∑︁

(𝑎2,...,𝑎𝑘 )∈𝑆 ( 𝑎1−𝑤𝜆
;𝑎1)

(𝑛 − 𝑎1)!
𝑎2! · · · 𝑎𝑘 !

𝑘∏
𝑖=2

(
𝜋𝑖

1 − 𝜋1

)𝑎𝑖ª®®¬
𝑛!𝜋𝑎1

1 (1 − 𝜋1)𝑛−𝑎1
𝑎1!(𝑛 − 𝑎1)!

= 1 −
𝑛∑︁

𝑎1=0

∑︁
(𝑎2,...,𝑎𝑘 )∈𝑆 ( 𝑎1−𝑤𝜆

;𝑎1)

𝑛!
𝑎1!𝑎2! · · · 𝑎𝑘 !

𝑘∏
𝑖=1

𝜋
𝑎𝑖
𝑖

for any real number 𝑤. This completely characterizes the distribution of𝑊𝜆 for any prob-
ability vector (𝜋1, ..., 𝜋𝑘). However, given that 𝑘 ≥ 3, the equations 𝜋1 = 𝜆max{𝜋2, ..., 𝜋𝑘}
and 𝜋1 + · · · + 𝜋𝑘 = 1 does not determine the vector (𝜋1, ..., 𝜋𝑘) uniquely. Thus, unlike
the case of pairwise choice situations, assuming the validity of the hypothesis (10) does not
identify the distribution of𝑊𝜆. We thus have to use some suitable proxies for 𝜋𝑖s, 𝑖 = 2, ..., 𝑘,
to determine a specific distribution for𝑊𝜆 to evaluate the 𝑝-value in (12) exactly.
The procedure we propose here uses the sample relative frequencies as proxies for

𝜋2, ..., 𝜋𝑘 , and to account for the null hypothesis being true, sets 𝜋1 as 𝜆 times the largest of
these frequencies. That is, we define

𝜋 ′
2 := ℓ𝑛 (𝑥2, 𝑆), ..., 𝜋 ′

𝑘
:= ℓ𝑛 (𝑥𝑘 , 𝑆) and 𝜋 ′

1 := 𝜆max{𝜋 ′
2, ..., 𝜋

′
𝑘
}.

If 𝜋 ′
𝑖 = 0 for each 𝑖 = 2, ..., 𝑘 here, then we are in the exceptional case in which the agent

is observed to choose 𝑥1 from 𝑆 in every repetition of the experiment. In that case, of
course, we do not reject our null hypothesis, and thus include 𝑥1 in 𝑐𝜆,𝛼 (𝑆) as stipulated by
Assumption 2. If, on the other hand, 𝜋 ′

𝑖 > 0 for at least one 𝑖 = 2, ..., 𝑘, we normalize these
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numbers as

𝜋1 :=
𝜋 ′
1

𝜋 ′
1 + · · · + 𝜋 ′

𝑘

, ..., 𝜋𝑘 :=
𝜋 ′
𝑘

𝜋 ′
1 + · · · + 𝜋 ′

𝑘

.

These probabilities are, in turn, used in lieu of the actual probabilities 𝜋1, ..., 𝜋𝑘 to deter-
mine the distribution of𝑊𝜆 exactly. In other words, provided that the agent has chosen
an alternative other than 𝑥1 at least once from 𝑆, the 𝑝-value for testing “𝑥1 ∈ 𝑐𝜆,𝛼 (𝑆)” is
obtained as

𝑝 = Prob
(
𝑊 ≤ 𝐿𝑛 (𝑥1, 𝑆) − 𝜆 max

𝑖=2,...,𝑘
𝐿𝑛 (𝑥𝑖, 𝑆)

)
with𝑊 being a simple (rng(𝑊𝜆)-valued) random variable whose cdf is given by

Prob(𝑊 ≤ 𝑤) = 1 −
𝑛∑︁

𝑎1=0

∑︁
(𝑎2,...,𝑎𝑘 )∈𝑆 ( 𝑎1−𝑤𝜆

;𝑎1)

𝑛!
𝑎1!𝑎2! · · · 𝑎𝑘 !

𝑘∏
𝑖=1

𝜋
𝑎𝑖
𝑖
. (13)

We thus accept 𝑥1 as a choice from 𝑆 (given 𝜆, and at the significance level 𝛼) iff either 𝑥1
is chosen in 𝑆 in every repetition or 𝑝 ≥ 𝛼 .

Remark 6. We can also reformulate this test as a threshold test. Define

𝑤𝜆,𝑛 := max {𝑤 ∈ rng(𝑊𝜆) : Prob(𝑊 ≤ 𝑤) ≤ 𝛼}

where𝑊 is the random variable whose cumulative distribution is given by (13). Then, our
test maintains that we reject the hypothesis 𝐻 if ℓ𝑛 (𝑥1, 𝑆) − 𝜆max{𝑝2, ..., 𝑝𝑘} ≤ 1

𝑛
𝑤𝜆,𝑛, or

equivalently, do not include 𝑥1 in 𝑐𝜆,𝛼 (𝑆) if the realization of L𝑛 (𝑥1, 𝑆) − 𝜆L𝑛 (𝑥𝑖, 𝑆) is less
than or equal to 𝑤𝜆,𝑛 for each 𝑖 = 2, ..., 𝑘 . □

3.3.2 The General Testing Problem, Revisited

Let us now return to the general hypothesis testing problem at hand, namely, (3). Again,
suppose 𝜆 and 𝛼 are chosen. If all the menus 𝑆1, ..., 𝑆𝑚 are doubletons, we have described
how to test this problem at the control level 𝛼 (by means of the Benjamini-Hochberg pro-
cedure) in Section 3.2.3. The general case can now be handled by the analogous approach.
First, we delete from the system all hypotheses that correspond to alternatives that are
most frequently chosen in the menus that belong, and include these as “choices” from those
menus. For each of the remaining hypotheses, we determine the 𝑝-values as described in the
previous subsection. Finally, we order these 𝑝-values, and apply the Benjamini-Hochberg
procedure at the control level 𝛼 to determine exactly which of the hypotheses of (3) are
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rejected. This furnishes the inferred choice correspondence of the individual subject to the
selected values of 𝜆 and 𝛼 .

4 Application: On the Transitivity of Preferences

To show how our method can be applied easily to choice data, we use it in the case of an em-
inent experiment: Experiment 1 of Tversky (1969). This is of the best known experiments
in this area, with more than 3300 citations in Google Scholar at the time of this writing. The
primary goal of Tversky’s study was to show that preferences may violate stochastic transi-
tivity in multi-attribute choice problems in which differences in one attribute are less promi-
nent. In the modern literature on boundedly rational choice, Tversky (1969) is routinely
cited as evidence of cyclical individual choice behavior, and hence the violation of WARP (cf.
Manzini and Mariotti, 2007, Masatlioglu, Nakajima, and Ozbay, 2012, and Tserenjigmid,
2015). But Tversky’s experiment uses stochastic choice data, and to see if it indeed provides
evidence of widespread violation of WARP, one needs to infer subjects’ deterministic choice
correspondences. We apply our method to do so, and come to more nuanced conclusions.
Before proceeding, we note that the original experiment of Tversky had only 8 subjects,

but was later replicated by Regenwetter et al. (2011) with 18 participants.20 We pool the
data to obtain the behavior of 26 individuals.

TheOriginal Experiment. Tversky’s experiment studied transitivity from doubleton choice
problems and recorded the choice from all pairs of 5 gambles, named 𝑎, 𝑏, ..., 𝑒, each re-
peated 20 times (with additional ‘decoy’ choices in between). Gambles were such that
those with names adjacent in the alphabet had similar probabilities of winning and more
pronounced differences in payoffs; probabilities of winning differed substantially only across
gambles with names further apart in the alphabet.21 Tversky conjectured that this would
lead to violations of transitivity of choices. To investigate this, he tested whether the empir-
ical stochastic choice function satisfied Weak Stochastic Transitivity (WST) and found that
this property failed significantly for 5 out of the 8 subjects (62%).22

20The only differences are the use of computers, updated payoffs (since decades have passed), and the
implementation of the experiment in only one session (as opposed to Tversky’s five sessions).
21If a gamble that pays 𝑥 with probability 𝑝 is identified by (𝑝, 𝑥), the gambles were: 𝑎 = ( 724 , 5), 𝑏 =

( 824 , 4.75), 𝑐 = ( 924 , 4.50), 𝑑 = ( 1024 , 4.25), 𝑒 = ( 1124 , 4). When comparing, for example, 𝑎 and 𝑏, the difference
between payoffs (5 vs. 4.75) seems more relevant than the difference between probabilities ( 724 vs.

8
24 ).

22Recall that a stochastic choice function satisfies Weak Stochastic Transitivity if 𝑃 (𝑥, {𝑥,𝑦}) ≥ .5 and
𝑃 (𝑦, {𝑦, 𝑧}) ≥ .5 imply 𝑃 (𝑥, {𝑥, 𝑧}) ≥ .5. Subsequent literature questioned the statistical tests used in Tver-
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Applying our method. We use our procedure to infer a choice correspondence for each
subject and test if this correspondence satisfies WARP. Maintaining 𝛼 = .05, we consider
values of 𝜆 ∈ {0, .3, .5, .7, 1}. The first column of Table 1 displays the fraction of subjects
whose computed choice correspondence abides by WARP for each 𝜆.
As clear from the table, the majority of subjects are found rational unless 𝜆 is chosen very

high: the fraction of WARP-abiding subjects ranges from 100% when 𝜆 = 0, to 62% when
𝜆 = 0.5, to 42% when 𝜆 = 1.23 Even with 𝜆 = .7, the choices of about half of the subjects
are consistent with rationality. One needs rather extreme values of the parameters, like 𝜆
close to one, to obtain a relevant majority violating rationality. Overall, contrary to what is
often argued, this data does not appear to constitute evidence of widespread non-transitive
or non-rational behavior in deterministic choice.
These results also allow us to ease another possible concern with our method. As dis-

cussed at length in Section 3, our inference problem takes the form of multiple-hypotheses
testing, which one may worry may result in accepting all null hypotheses unless we have
very large samples. In our context, this would translate into accepting any element as a
choice (i.e., declaring 𝑐𝜆,𝛼 (𝑆) = 𝑆 for each 𝑆), giving WARP by default.
The present data shows this is not the case. While the inferred choice correspondence

is bound to be very inclusive with 𝜆 = 0, our procedure becomes discerning even with low
values of 𝜆, such as .3. Indeed, 19% of the subjects are found to violate WARP with 𝜆 = .3,
while 48% does so with 𝜆 = .5.

WST vs. WARP. To further investigate the issue of rationality in this data, it may be useful
to look at how testing WARP using our approach relate to testing violations of WST. There
is a formal, albeit superficial, relation between the two tests: if 𝜆 = 1 and if we treat the
observed data as if it were P—that is, we disregard sampling errors—then an alternative
belongs to the computed choice correspondence if, and only if, it is chosen at least half of the
times. Thus, in such a special treatment, testing transitivity of the choice correspondence is
identical to testing WST. However, the two tests differ once we depart from making either of
these extreme assumptions. (The choice of 𝜆 = 1 is so demanding that it rules out options

sky (1969) and argued that more apt tests fail to find significant violations of Weak Stochastic Transitivity;
cf. Iverson and Falmagne (1985) and Regenwetter et al. (2011). As mentioned explicitly in the latter, these
concerns are rarely discussed, which is particularly striking given the prominence of Tversky’s original paper.
23The fact that the fraction of rational subjects decreases with 𝜆 is a feature of this data but not a prediction
of the model. As 𝜆 increases, fewer items are included in the choice correspondences, which may eliminate
previous violations of WARP but may well add new ones. For example, in the data, subject #17 satisfies WARP
with 𝜆 = .3 but violates it with 𝜆 = .7, while subject #5 violates WARP with 𝜆 = .3 but satisfies it with 𝜆 = .7.
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𝜆
Satisfy
WARP

Satisfy
WST

Satisfy
WARP and WST

Sat. WARP
Violates WST

Sat. WST
Violates WARP

Violates
WARP and WST

0 100 46 46 54 0 0
.3 81 46 31 50 15 4
.5 62 46 31 31 15 23
.7 50 46 35 15 12 38
1 42 46 31 12 15 42

Table 1: Percentage of subject that satisfy WARP and WST in the data of Tversky (1969)
and replication

chosen, say, 8 or 9 times out of 20 repetitions.)
This is easy to illustrate using Tversky’s data. WST is satisfied by only 46% of the sub-

jects, which implies that testing WARP using our procedure returns a higher fraction of
rational subjects unless 𝜆 is very high. Importantly, violations of WARP and of WST are nei-
ther nested nor perfectly correlated. This is evident from Table 1, which reports the fraction
of subjects that satisfy each property and their combination. For example, when 𝜆 = .5, an
apparently reasonable choice for the level of selectivity, 62% of subjects satisfy WARP and
46% satisfy WST, but these are not nested groups: 31% satisfy WARP but not WST, another
15% satisfy WST and not WARP. Only 23% violates both, and only 31% satisfies both. Ta-
ble 1 plainly shows how, across different values of 𝜆, sizable fractions of subjects satisfy one
property but not the other. Independently of the merit of each procedure, it seems to us
that analyzing choice data by employing both approaches—that is, inferring a deterministic
choice correspondence as well as deducing a stochastic choice function—provides a better
insight into understanding one’s choice behavior.

5 Conclusion

Despite being perhaps the most fundamental primitive of microeconomics, choice corre-
spondences are not observable. Barring some specially designed experiments, all we can
observe in general is a single choice made by an individual at a given time, and not the
set of all her potential choices. In this paper we propose a method to “compute” a choice
correspondence using data that come in the form of repeated observations of choices made
by a decision maker.
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Our approach constructs one’s choice correspondence in two stages. First, the analyst
needs to decide how to impute the choice correspondence if she had access to an ‘ideal’
dataset that provides the true choice probability of each option. There is no unexception-
able method of doing this, but we have underscored here a one-parameter family of choice
imputations. These have the advantage of being mathematically simple, and as we have
shown in Section 2, are erected on an axiomatic foothold (especially in the context of pair-
wise choice problems). Any one member of this family either includes everything that is
chosen with positive probability in the choice set from a menu 𝑆 , or keeps in that set only
the options whose probability of choice is higher than 𝜆 times the choice probability of any
other alternative in 𝑆 . The parameter 𝜆 determines how inclusive the criterion is, and would
be chosen by the analyst according to the problem at hand.
The second stage pertains to applying such a rule in the real world, where the analyst

does not have access to an ideal data set, but is instead confronted with a finite number of
observations. This brings a set of issues concerning sampling errors to the fore. To address
these, we develop statistical methods to estimate a choice correspondence by means of
hypothesis testing.
When combined, these two stages require the analyst to select two parameters—𝜆, in-

dicating the inclusivity with ideal data, and 𝛼 , indicating the level of significance for hy-
pothesis testing—and provides practical formulae to infer choice correspondences. To illus-
trate the use of our overall method of elicitation, we considered here the repeated (within-
subject) choice experiment of Tversky (1969) and estimated the deterministic choice corre-
spondences of the subjects of this experiment. We show how our approach may yield novel
insights into nature of the violations of rationality in this data.
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APPENDIX: PROOFS

We begin with two lemmata.

Lemma A.1.24 Let Ψ : scf (𝑋 ) → cc(𝑋 ) be a choice imputation that satisfies the prop-
erties A and B. Then, for every P,Q ∈ scf (𝑋 ) and 𝑆 ∈ 𝔛2,

𝑥 ∈ Ψ(P) (𝑆) and Q(𝑧, 𝑆) ≥ P(𝑥, 𝑆) imply 𝑧 ∈ Ψ(Q) (𝑆).

Proof. As usual, we put 𝐶P := Ψ(P) for any P ∈ scf (𝑋 ). Now take any P,Q ∈ scf (𝑋 ) and 𝑆 ∈ 𝔛2

and pick any 𝑥, 𝑧 ∈ 𝑆 such that 𝑥 ∈ 𝐶P(𝑆) and Q(𝑧, 𝑆) ≥ P(𝑥, 𝑆). We wish to show that 𝑧 ∈ 𝐶Q(𝑆).
To this end, we take any 𝑦 ∈ 𝑋\{𝑥, 𝑧}, put 𝐴 := {𝑥,𝑦}, and pick a P1 ∈ scf (𝑋 ) such that

P1(𝑥, 𝑆) = P(𝑥, 𝑆) and P1(𝑦,𝐴) = P(𝑥, 𝑆) .

As P1(·, 𝑆) = P(·, 𝑆), we have 𝐶P1 (𝑆) = 𝐶P(𝑆) by property A, so 𝑥 ∈ 𝐶P1 (𝑆). But then, since
P1(𝑦,𝐴) = P(𝑥, 𝑆) = P1(𝑥, 𝑆), property B entails that 𝑦 ∈ 𝐶P1 (𝐴) .
Let us now pick any P2 ∈ scf (𝑋 ) such that

P2(𝑦,𝐴) = P1(𝑦,𝐴) and P2(𝑧, 𝑆) = Q(𝑧, 𝑆) .

As P2(·, 𝐴) = P1(·, 𝐴), we have 𝐶P2 (𝐴) = 𝐶P1 (𝐴) by property A, so by what we have just found,
𝑦 ∈ 𝐶P2 (𝐴) . Moreover,

P2(𝑧, 𝑆) = Q(𝑧, 𝑆) ≥ P(𝑥, 𝑆) = P1(𝑦,𝐴) = P2(𝑦,𝐴),

so by property B, 𝑧 ∈ 𝐶P2 (𝑆). But as P2(·, 𝑆) = Q(·, 𝑆), property A says that 𝐶P2 (𝑆) = 𝐶Q(𝑆), so we
conclude that 𝑧 ∈ 𝐶Q(𝑆). ■

Lemma A.2. Let Ψ : scf (𝑋 ) → cc(𝑋 ) be a choice imputation that satisfies the proper-
ties A and B. Then, for every P,Q ∈ scf (𝑋 ) and 𝑆,𝑇 ∈ 𝔛2,

𝑥 ∈ Ψ(P) (𝑆) and Q(𝑧,𝑇 ) ≥ P(𝑥, 𝑆) imply 𝑧 ∈ Ψ(Q) (𝑇 ).

Proof. As usual, we put 𝐶P := Ψ(P) for any P ∈ scf (𝑋 ). Now take any P,Q ∈ scf (𝑋 ) and 𝑆,𝑇 ∈ 𝔛2

and pick any (𝑥, 𝑧) ∈ 𝑇 × 𝑆 such that 𝑥 ∈ 𝐶P(𝑆) and Q(𝑧,𝑇 ) ≥ P(𝑥, 𝑆). If 𝑆 = 𝑇, we are done by
Lemma A.1. Suppose, then, 𝑆 and 𝑇 are distinct. Let P0 be any element of scf (𝑋 ) with P0(·, 𝑆) =
P(·, 𝑆) and P0(·,𝑇 ) = Q(·,𝑇 ) . By the property A, we then have𝐶P0 (𝑆) = 𝐶P(𝑆) and𝐶P0 (𝑇 ) = 𝐶Q(𝑇 ) .
24Gerelt Tserenjigmid has suggested this lemma to us, which simplifies the subsequent argument.
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It follows that 𝑥 ∈ 𝐶P0 (𝑆) while P0(𝑧,𝑇 ) ≥ P0(𝑥, 𝑆), whence property B entails 𝑧 ∈ 𝐶P0 (𝑇 ), so we
again find 𝑧 ∈ 𝐶Q(𝑇 ), as desired. ■

Proof of Theorem 1

For any P ∈ scf (𝑋 ), we put 𝐶P := Ψ(P), and define

𝜆P := min
{
𝑚P(𝑆)
𝑀P(𝑆)

: 𝐶P(𝑆) = 𝑆 ∈ 𝔛2

}
.

Clearly, 0 < 𝜆P ≤ 1. (If 𝜆P = 0 were the case, then there would be an 𝑆 ∈ 𝔛2 with 𝑆 = 𝐶P(𝑆)
and𝑚P(𝑆) = 0, but this would contradict (1).) Now take any P ∈ scf (𝑋 ) and 𝑆 ∈ 𝔛2. Denote the
elements of 𝑆 by 𝑥 and 𝑦 so that P(𝑥, 𝑆) ≤ P(𝑦, 𝑆). If 𝑥 ∈ 𝐶P(𝑆), then P(𝑥,𝑆 )P(𝑦,𝑆 ) ≥ 𝜆P by definition of 𝜆P.
Conversely, suppose P(𝑥, 𝑆) ≥ 𝜆PP(𝑦, 𝑆). Since 𝔛2 is finite, there is an 𝑇 ∈ 𝔛2 with 𝐶P(𝑇 ) = 𝑇 and
𝑚P (𝑇 )
𝑀P (𝑇 ) = 𝜆P. Then,

P(𝑥,𝑆 )
1−P(𝑥,𝑆 ) ≥ 𝑚P (𝑇 )

1−𝑚P (𝑇 ) , and it follows that P(𝑥, 𝑆) ≥ 𝑚P(𝑇 ) . But then, by property
B, we obtain 𝑥 ∈ 𝐶P(𝑆). Thus, 𝑥 ∈ 𝐶P(𝑆) iff P(𝑥, 𝑆) ≥ 𝜆PP(𝑦, 𝑆) . As this property (as well as Lemma
A.1) implies that 𝑦 ∈ 𝐶P(𝑆), and P(𝑦, 𝑆) ≥ 𝜆P𝑀P(𝑆) holds trivially, and because 𝑆 was arbitrarily
chosen above, we conclude that

𝐶P(𝑆) = {𝑥 ∈ 𝑆 : P(𝑥, 𝑆) ≥ 𝜆P𝑀P(𝑆)}

for every P ∈ scf (𝑋 ) and 𝑆 ∈ 𝔛2.
To complete our proof, we define

𝜆 := inf
P∈scf (𝑋 )

𝜆P.

Let us again fix arbitrary P ∈ scf (𝑋 ) and 𝑆 ∈ 𝔛2, and denote the elements of 𝑆 by 𝑥 and 𝑦 so that
P(𝑥, 𝑆) ≤ P(𝑦, 𝑆). Besides, let us pick a sequence (Q𝑘 ) in scf (𝑋 ) such that 𝜆Q𝑘 ↓ 𝜆. As 𝔛2 is finite,
for every positive integer 𝑘, there is a 𝑇𝑘 ∈ 𝔛2 with 𝐶Q𝑘 (𝑇𝑘 ) = 𝑇𝑘 and 𝜆Q𝑘 =

𝑚Q𝑘 (𝑇𝑘 )
𝑀Q𝑘 (𝑇𝑘 )

. Since 𝔛2 is
finite, there must exist a constant subsequence of (𝑇𝑘 ), so it is without loss of generality to assume
that 𝑇1 = 𝑇2 = · · · = 𝑇 for some 𝑇 ∈ 𝔛2. Then, 𝜆Q𝑘 =

𝑚Q𝑘 (𝑇 )
𝑀Q𝑘 (𝑇 ) and 𝐶Q𝑘 (𝑇 ) = 𝑇 for each 𝑘. Next,

for each 𝑘 ∈ N we take any P𝑘 ∈ scf (𝑋 ) with P𝑘 (𝑥, 𝑆) = 𝑚Q𝑘 (𝑇 ) . Then, by Lemma A.2, we have
𝐶P𝑘 (𝑆) = 𝑆 for each 𝑘. Thus, 𝜆Q𝑘 =

𝑚P𝑘 (𝑆 )
𝑀P𝑘 (𝑆 )

and 𝐶P𝑘 (𝑆) = 𝑆 for each 𝑘.

Consider first the case in which 𝜆 = 0. In this case,
𝑚P𝑘 (𝑆 )
𝑀P𝑘 (𝑆 )

↓ 0,whence𝑚P𝑘 (𝑆) ↓ 0. If P(𝑥, 𝑆) > 0,
therefore, we have P(𝑥, 𝑆) > 𝑚P𝑘 (𝑆) for large enough𝑘. But then, Lemma A.2 entails that 𝑥 ∈ 𝐶P(𝑆) .
Thus, supp(P(·, 𝑆)) ⊆ 𝐶P(𝑆) . As the converse inequality is ensured by (1), we conclude that𝐶P(𝑆) =
𝐶P,0(𝑆), as desired.
We now assume that 𝜆 > 0. If𝑥 ∈ 𝐶P(𝑆), then P(𝑥, 𝑆) ≥ 𝜆P𝑀P(𝑆) ≥ 𝜆𝑀P(𝑆), so𝐶P(𝑆) ⊆ 𝐶P,𝜆 (𝑆).

Conversely, assume P(𝑥, 𝑆) ≥ 𝜆𝑀P(𝑆), and note that this implies P(𝑥, 𝑆) > 0. If P(𝑥, 𝑆) > 𝜆𝑀P(𝑆),
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then, by definition of 𝜆, there is a 𝑘 large enough that P(𝑥,𝑆 )
𝑀P (𝑆 ) > 𝜆Q𝑘 ≥ 𝜆,whence P(𝑥,𝑆 )

1−P(𝑥,𝑆 ) >
𝑚P𝑘 (𝑆 )
1−𝑚P𝑘 (𝑆 )

.

Thus, P(𝑥, 𝑆) > 𝑚P𝑘 (𝑇 ),whence, by Lemma A.2, we find 𝑥 ∈ 𝐶P(𝑆), as desired. Finally, suppose that
P(𝑥, 𝑆) = 𝜆𝑀P(𝑆) . In this case, we have

𝑚P𝑘 (𝑆 )
1−𝑚P𝑘 (𝑆 )

↓ P(𝑥,𝑆 )
1−P(𝑥,𝑆 ) , whence𝑚P𝑘 (𝑆) ↓ P(𝑥, 𝑆). By property

C, we thus again find 𝑥 ∈ 𝐶P(𝑆). As Lemma A.1 implies 𝑦 ∈ 𝐶P(𝑆), and P(𝑦, 𝑆) ≥ 𝜆𝑀P(𝑆) holds
trivially, we conclude that 𝐶P(𝑆) = {𝑥 ∈ 𝑆 : P(𝑥, 𝑆) ≥ 𝜆𝑀P(𝑆)} = 𝐶P,𝜆 (𝑆), as we sought.

Proof of Theorem 2

The proof of the “if” part of the claim is straightforward, so we focus on its “only if” part. Assume
that Φ : scf (𝑋 ) → cc(𝑋 ) satisfies the properties A, B, C and D. By Theorem 1, there exists a (unique)
𝜆 ∈ [0, 1] such that 𝐶P(𝑆) = 𝐶P,𝜆 (𝑆) for every 𝑆 ∈ 𝔛2 and P ∈ scf (𝑋 ), where, as usual, we write
𝐶P for Φ(P). Now take any P ∈ scf (𝑋 ) and 𝑆 ∈ 𝔛 with |𝑆 | ≥ 3. Let 𝑦 be an element of 𝑆 with
P(𝑦, 𝑆) = 𝑀P(𝑆), and note that 𝑦 ∈ 𝐶P(𝑆) by the property D (applied for 𝑥 = 𝑦). Next, take any
𝑥 in 𝑆, put 𝐴 := {𝑥,𝑦}, and define Q ∈ scf (𝑋 ) as Q(·,𝑇 ) := P(·,𝑇 ) for every 𝑇 ∈ 𝔛\{𝐴}, and
Q(𝑥,𝐴) := P(𝑥,𝑆 )

P(𝑥,𝑆 )+P(𝑦,𝑆 ) and Q(𝑦,𝐴) := 1 − Q(𝑥,𝐴) .
Now suppose 𝑥 ∈ 𝐶P(𝑆) . As 𝐴 ≠ 𝑆 (because 𝑆 does not belong to 𝔛2), we have P(·, 𝑆) = Q(·, 𝑆),

and the property A thus implies that 𝑥 ∈ 𝐶Q(𝑆). Besides,

Q(𝑥,𝐴)
Q(𝑦,𝐴) =

P(𝑥, 𝑆)
P(𝑦, 𝑆) =

Q(𝑥, 𝑆)
Q(𝑦, 𝑆) ,

so property D entails 𝑥 ∈ 𝐶Q(𝐴). Since 𝐴 ∈ 𝔛2, this means that Q(𝑥,𝐴) ≥ 𝜆Q(𝑦,𝐴), whence
P(𝑥, 𝑆) ≥ 𝜆P(𝑦, 𝑆) = 𝜆𝑀P(𝑆). Conversely, suppose P(𝑥, 𝑆) ≥ 𝜆𝑀P(𝑆) holds. Then,

Q(𝑥,𝐴) =
(
Q(𝑥,𝐴)
Q(𝑦,𝐴)

)
Q(𝑦,𝐴) =

(
P(𝑥, 𝑆)
P(𝑦, 𝑆)

)
𝑀Q(𝐴) ≥ 𝜆𝑀Q(𝐴)

so 𝑥 ∈ 𝐶Q(𝐴) . It then follows from the property D that 𝑥 ∈ 𝐶Q(𝑆). Since P(·, 𝑆) = Q(·, 𝑆), the
property A thus implies 𝑥 ∈ 𝐶P(𝑆) . In view of the arbitrary choice of 𝑥 in 𝑆, we thus conclude that

𝐶P(𝑆) = {𝑥 ∈ 𝑆 : P(𝑥, 𝑆) ≥ 𝜆𝑀P(𝑆)},

that is, 𝐶P(𝑆) = 𝐶P,𝜆 (𝑆). In view of the arbitrary choice of 𝑆 and P, we are done.

Proof of Lemma 3

For any 𝑛 ∈ N and 𝑐 ∈ {0, ..., 𝑛}, define the self-map 𝜑𝑛,𝑐 on [0, 1] by

𝜑𝑛,𝑐 (𝜋) :=
𝑐∑︁
𝑖=0

(
𝑛

𝑖

)
𝜋𝑖 (1 − 𝜋)𝑛−𝑖
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and note that

𝜑 ′
𝑛,𝑐 (𝜋) =

𝑐∑︁
𝑖=0

(
𝑛

𝑖

)
𝑖𝜋𝑖−1(1 − 𝜋)𝑛−𝑖 −

𝑐∑︁
𝑖=0

(
𝑛

𝑖

)
(𝑛 − 𝑖)𝜋𝑖 (1 − 𝜋)𝑛−𝑖−1

=

𝑐∑︁
𝑖=1

𝑛!
(𝑖 − 1)!(𝑛 − 𝑖)!𝜋

𝑖−1(1 − 𝜋)𝑛−𝑖 −
𝑐∑︁
𝑖=0

𝑛!
𝑖!(𝑛 − 𝑖 − 1)!𝜋

𝑖 (1 − 𝜋)𝑛−𝑖−1

= 𝑛

𝑐∑︁
𝑖=1

(
𝑛 − 1
𝑖 − 1

)
𝜋𝑖−1(1 − 𝜋)𝑛−𝑖 − 𝑛𝜑𝑛−1,𝑐 (𝜋)

= 𝑛

(
𝑐−1∑︁
𝑖=0

(
𝑛 − 1
𝑖

)
𝜋𝑖 (1 − 𝜋)𝑛−𝑖−1 − 𝜑𝑛−1,𝑐 (𝜋)

)
= 𝑛

(
𝜑𝑛−1,𝑐−1(𝜋) − 𝜑𝑛−1,𝑐 (𝜋)

)
.

It follows that 𝜑 ′
𝑛,𝑐 < 0, and the lemma follows.25

Proofs of the Claims of Remark 4

For any 𝜋 ∈ [0, 1], let (𝑥𝑚) be a sequence of Bernoulli random variables on a given probability space
that are i.i.d. with parameter 𝜋. For any positive integer 𝑛, put 𝑢𝑛 := 𝑥1 + · · · + 𝑥𝑛; 𝑢𝑛 is binomially
distributed with parameters 𝑛 and 𝜋. Let 𝐹𝑛 stand for the cumulative distribution function of 𝑢𝑛.
Notice that 𝐹𝑛 ≥ 𝐹𝑛+1 | (−∞,𝑛] implies𝑤𝜆,𝑛 ≤ 𝑤𝜆,𝑛+1, so it is enough to prove the former inequality to
conclude that𝑤𝜆,𝑛 is increasing in 𝑛. To this end, fix an 𝑛 ∈ N, take any 𝜃 ∈ {0, ..., 𝑛}, and note that

𝐹𝑛+1(𝜃 ) = Prob(𝑢𝑛+1 ≤ 𝜃 )

= Prob(𝑢𝑛 < 𝜃 ) + Prob(𝑢𝑛+1 ≤ 𝜃 | 𝑢𝑛 = 𝜃 )Prob(𝑢𝑛 = 𝜃 )

= 𝐹𝑛 (𝜃 − 1) + (1 − 𝜋)
(
𝑛

𝜃

)
𝜋𝜃 (1 − 𝜋)𝑛−𝜃

=

(
𝐹𝑛 (𝜃 − 1) +

(
𝑛

𝜃

)
𝜋𝜃 (1 − 𝜋)𝑛−𝜃

)
− 𝜋

(
𝑛

𝜃

)
𝜋𝜃 (1 − 𝜋)𝑛−𝜃

= 𝐹𝑛 (𝜃 ) − 𝜋

(
𝑛

𝜃

)
𝜋𝜃 (1 − 𝜋)𝑛−𝜃

≤ 𝐹𝑛 (𝜃 ) .

This proves our first assertion in Remark 4.
Next, fix any 𝑛 ∈ N and 𝜋 ∈ [0, 1] such that 𝜋 > 1

𝑛
. By Theorem 1 of Greenberg and Mohri

(2014), we have Prob(𝑢 ≤ 𝑛𝜋) ≥ 1
4 for any binomially distributed random variable 𝑢 with parame-

25This argument proves a bit more than what is needed for Lemma 3. It shows that 1
𝑛
𝜑 ′
𝑛,𝑐 (𝜋) equals

Prob(𝑤 ≤ 𝑐 − 1)− Prob(𝑤 ≤ 𝑐) where 𝑤 is a random variable with 𝑤 ∼ Binomial(𝑛 − 1, 𝜋).
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ters 𝑛 and 𝜋 . Setting 𝜋 = 𝜆
1+𝜆 and picking any 𝛼 ∈ [0, 14 ), it then follows from (6) that 𝑤𝜆,𝑛 ≤ 𝑛𝜆

1+𝜆
whenever 𝑛 > 1+𝜆

𝜆
, as we claimed in Remark 4.

To prove the consistency assertion made in Remark 4, take any 𝜆 ∈ (0, 1] and 𝑛 ∈ N, and let 𝑢𝑛
be a binomially distributed random variable with parameters 𝑛 and 𝜋 := 𝜆

1+𝜆 . (Our claim in the case
where 𝜆 = 0 is trivially true.) Note that Prob(𝑛𝜋 < 𝑢𝑛 ≤ ⌈𝑛𝜋⌉) is either 0 (which happens when 𝑛𝜋
is an integer) or it equals Prob(𝑢𝑛 = ⌈𝑛𝜋⌉) . Since

(
𝑛

𝑖

)
𝜋𝑖−1(1 − 𝜋)𝑛−𝑖 → 0 as 𝑛 ↑ ∞ for any positive

integer 𝑖, therefore, we have

Prob(𝑛𝜋 < 𝑢𝑛 ≤ ⌈𝑛𝜋⌉) → 0 as 𝑛 ↑ ∞.

Since every median of the binomial distribution with parameters 𝑛 and 𝜋 lies within ⌊𝑛𝜋⌋ and ⌈𝑛𝜋⌉
– see, for instance, Kaas and Buhrman (1980) – it follows that for every 𝜀 > 0 there is a positive
integer 𝑁 large enough that Prob(𝑢𝑛 ≤ 𝑛𝜋) ≥ 1

2 − 𝜀 for each 𝑛 ≥ 𝑁 . In particular, for any 𝛼 within,
say, (0, 14 ), we have

Prob(𝑢𝑛 ≤ 𝑛𝜋) > 𝛼 for each 𝑛 ≥ 𝑁,

which, by (6), means 𝑤𝜆,𝑛 ≤ 𝑛𝜋 for each 𝑛 ≥ 𝑁 . We conclude that lim sup 𝑤𝜆,𝑛

𝑛
≤ 𝜋.

On the other hand, by Hoeffding’s Inequality,

Prob(𝑢𝑛 ≤ (𝜋 − 𝜀)𝑛) ≤ 𝑒−2𝜀
2𝑛 for every 𝑛 ∈ N and 𝜀 > 0.

Consequently, for any 𝜀 > 0, Prob(𝑢𝑛
𝑛

≤ 𝜋 − 𝜀) → 0 as 𝑛 ↑ ∞. But by definition of 𝑤𝜆,𝑛,

Prob
(𝑢𝑛
𝑛

≤
𝑤𝜆,𝑛

𝑛
− 1

𝑛

)
= Prob(𝑢𝑛 ≤ 𝑤𝜆,𝑛 − 1) ≤ 𝛼 < Prob(𝑢𝑛 ≤ 𝑤𝜆,𝑛) = Prob

(𝑢𝑛
𝑛

≤
𝑤𝜆,𝑛

𝑛

)
for every 𝑛 ∈ N. It follows that, for any 𝜀 > 0, there is a positive integer 𝑁 large enough that

Prob
(𝑢𝑛
𝑛

≤ 𝜋 − 𝜀 − 1
𝑛

)
< Prob

(𝑢𝑛
𝑛

≤
𝑤𝜆,𝑛

𝑛

)
for each 𝑛 ≥ 𝑁,

whence
𝜋 − 𝜀 <

𝑤𝜆,𝑛

𝑛
+ 1

𝑛
for each 𝑛 ≥ 𝑁 .

We conclude that 𝜋 − 𝜀 ≤ lim inf 𝑤𝜆,𝑛

𝑛
for any 𝜀 > 0, which means 𝜋 ≤ lim inf 𝑤𝜆,𝑛

𝑛
. Combining this

with what we have found in the previous paragraph yields lim 𝑤𝜆,𝑛

𝑛
= 𝜋 = 𝜆

1+𝜆 , as we sought.
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