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INCOMPLETE PREFERENCES UNDER UNCERTAINTY:
INDECISIVENESS IN BELIEFS VERSUS TASTES

BY EFE A. OK, PIETRO ORTOLEVA, AND GIL RIELLA1

We investigate the classical Anscombe–Aumann model of decision-making under
uncertainty without the completeness axiom. We distinguish between the dual traits
of “indecisiveness in beliefs” and “indecisiveness in tastes.” The former is captured by
the Knightian uncertainty model, the latter by the single-prior expected multi-utility
model. We characterize axiomatically the latter model. Then we show that, under inde-
pendence and continuity, these two models can be jointly characterized by means of a
partial completeness property.

KEYWORDS: Incomplete preferences, the Anscombe–Aumann model, Knightian un-
certainty.

1. INTRODUCTION

IN THE CONTEXT of uncertainty, there appear to be two main sources for the
incompleteness of the preferences of a decision maker. First, a person may
find it impossible to compare the desirability of two acts due to the variation
of the promises of these acts across states, because, for some reason, she can-
not formulate a “precise guess” about the likelihood of the states of the world.
This sort of an incompleteness of preferences, which may be called indecisive-
ness in beliefs, is what Bewley’s well known model of Knightian uncertainty is
primed to capture. Second, even if one is able to assess, subjectively, the like-
lihood of each state, her preferences over acts might still be incomplete, due
to a possible inability to compare some certain outcomes. In turn, such sort of
an incompleteness of preferences, which may be called indecisiveness in tastes,
was what Aumann (1962) has aimed to capture. Put succinctly, the main objec-
tive of the present paper is to understand how we may be able to distinguish
between one’s indecisiveness in her beliefs and in her tastes from a behavioral
perspective.

We adopt the framework of the classical Anscombe–Aumann (1963) model
with a finite state space Ω and a compact (metric) prize space X . Our interest
in this paper is confined to those preference relations (on the space of so-called
horse race lotteries) that satisfy the Independence, Continuity, and Mono-
tonicity Axioms. A classical result in this setup is the Anscombe–Aumann ex-
pected utility theorem which shows that any such preference relation admits
a single-prior expected single-utility representation, provided that this relation is
complete. In turn, Bewley (2002) showed that if we require in this theorem only
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erees for their substantial comments, expository and otherwise, concerning this paper. Finally, we
acknowledge the financial support of the C. V. Starr Center for Applied Economics at New York
University.
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that the preference relation be complete on the set of all constant acts, then
that relation admits a multi-prior expected single-utility representation. The first
result of the present paper is that, if we instead replace the completeness as-
sumption with the postulate that subjects can reduce subjective uncertainty
to objective uncertainty, at least locally, then we obtain a single-prior expected
multi-utility representation; this may be viewed as the “dual” of the Knightian
uncertainty model.

We prove this theorem, indirectly, by first investigating the preferences that
exhibit either one or the other type of indecisiveness. This is in line with
some earlier work—see García del Amo and Ríos Insua (2002), Seidenfeld,
Schervish, and Kadane (1995), and Nau (2006)—that focused on preferences
that exhibit indecisiveness in beliefs and tastes simultaneously. We show here
that a necessary condition for both forms of incompleteness to hold at the
same time is that preferences violate a basic comparability property, which we
call the Weak Reduction Axiom. Put precisely, a preference relation that sat-
isfies the Independence, Continuity, and Weak Reduction Axioms can exhibit
only indecisiveness in beliefs or indecisiveness in tastes (but not both). As an
immediate consequence of this result, we obtain the aforementioned charac-
terization of the dual Knightian uncertainty model. Furthermore, we show that
this approach allows us to obtain the Knightian uncertainty model itself as a
consequence of a certain type of reduction of subjective uncertainty to objec-
tive uncertainty, thereby providing a unified behavioral basis for both of these
models.

2. PRELIMINARIES

We work within the classical Anscombe–Aumann setup with a finite state
space. In what follows, Ω stands for a finite (nonempty) set of states of the
world, X stands for a compact metric prize space, and Δ(X) stands for the set
of all Borel probability measures (lotteries) on X . As usual, we metrize Δ(X)
in such a way that metric convergence on it coincides with weak convergence
of Borel probability measures.

The linear space of all continuous real maps on X is denoted as C(X); we
view this space as normed by the sup-norm throughout the exposition. The ex-
pectation of any map u in C(X) with respect to a probability measure p in
Δ(X) is denoted by E(u�p), that is,

E(u�p) :=
∫
X

udp�

An act (or horse race lottery) in this setup is a function that maps the state
space Ω into the space Δ(X) of lotteries. The set of all acts, denoted by F , is,
therefore, Δ(X)Ω. In what follows, for any nonempty subset S of Ω, we denote
by 1S the indicator function of S on Ω. Thus, for any lottery p ∈ Δ(X) and act
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f ∈ F , the act that yields p if any one of the states in S occurs, and f (ω) at
any other state ω, is written as p1S + f1Ω\S . In particular, the constant act that
yields the lottery p at every state of the world can be written as p1Ω.

A preference relation � in the present framework is a preorder (i.e., a re-
flexive and transitive binary relation) on F . (As usual, the asymmetric part of
this preorder is denoted by �, and its symmetric part by ∼.) The following are
three standard postulates imposed on �.

THE INDEPENDENCE AXIOM: For any acts f , g, and h in F , and 0 < λ≤ 1,

f � g implies λf + (1 − λ)h � λg + (1 − λ)h�

THE CONTINUITY AXIOM: � is a closed subset of F × F .2

THE MONOTONICITY AXIOM: For any acts f and g in F , if f (ω)1Ω � g(ω)1Ω

for every state ω in Ω, then f � g.

The Anscombe–Aumann expected utility theorem says that a complete prefer-
ence relation � on F that satisfies the Independence, Continuity, and Mono-
tonicity Axioms can be represented by an aggregate utility function of the form

f �→
∑
ω∈Ω

μ(ω)E(u� f (ω))�

where μ is a probability distribution on Ω—interpreted as one’s prior beliefs
about the states of the world—and u is a continuous real function on X—
interpreted as one’s von Neumann–Morgenstern utility function over (riskless)
prizes.

3. NOTIONS OF INCOMPLETENESS

3.1. Indecisiveness in Beliefs

The most well known weakening of completeness in the Anscombe–Aumann
framework is the requirement that preferences be complete at least over con-
stant acts:

THE C-COMPLETENESS AXIOM: For any lotteries p and q in Δ(X),

either p1Ω � q1Ω or q1Ω � p1Ω�

2That is, for any convergent sequences (fm) and (gm) in F , with fm � gm for each m, we have
lim fm � limgm. We note that, when X is a finite set, all theorems in this paper remain valid if this
continuity property is replaced by the much weaker requirement that the sets {α :αf + (1 −α)g �
h} and {α :h � αf + (1 − α)g} are closed in [0�1] for any f , g, and h in F .



1794 E. A. OK, P. ORTOLEVA, AND G. RIELLA

When combined with the Independence, Continuity, and Monotonicity, Ax-
ioms, the C-Completeness Axiom initiates the following notion of expected
multi-utility representation:

DEFINITION: A preference relation � on F is said to admit a multi-prior ex-
pected single-utility representation if there exists a nonempty subset M of Δ(Ω)
and a function u ∈ C(X) such that, for any acts f and g in F , we have f � g if
and only if (iff)

∑
ω∈Ω

μ(ω)E(u� f (ω))≥
∑
ω∈Ω

μ(ω)E(u�g(ω)) for every μ ∈ M�(1)

Using this terminology, we can rephrase Bewley’s (2002) characterization as
follows:

BEWLEY’S EXPECTED UTILITY THEOREM: A preference relation � on F sat-
isfies the Independence, Continuity, Monotonicity, and C-Completeness Axioms
if, and only if, it admits a multi-prior expected single-utility representation.

Bewley’s model is a model of indecisiveness in beliefs. In this model, due to
C-completeness, the agent’s tastes over the lotteries in Δ(X) are presumed
complete (and represented by a single von Neumann–Morgenstern utility func-
tion). Instead, the indecisiveness of this individual pertains to her beliefs, and
manifests itself in the multiplicity of the priors in the representation (1).3

3.2. Indecisiveness in Tastes

Despite—or perhaps, because of—the influence of the Knightian uncer-
tainty model in decision theory and its applications, the literature does not
provide a “dual” to this model, one that would concentrate on the incomplete-
ness of the tastes of a decision maker, instead of on that of her beliefs. While,
with its origins going back to the seminal contribution of Aumann (1962), there
is now a fairly mature literature on modeling the incompleteness of tastes of an
individual over certain or risky prospects, such models are seldom considered
in the context of uncertainty. Indeed, a model that focuses only on this type
of indecisiveness would have the following form of expected utility representa-
tion:

DEFINITION: A preference relation � on F is said to admit a single-prior
expected multi-utility representation if there exist a probability distribution

3Bewley’s model has found many applications in economics. For instance, Rigotti and Shannon
(2005) and Kelsey and Yalcin (2007) used this model in the context of finance, Lopomo, Rigotti,
and Shannon (2009) in the context of mechanism design, and Ghirardato and Katz (2006) in the
context of voting theory.
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μ ∈ Δ(Ω) and a nonempty subset U of C(X) such that, for any acts f and g
in F , we have f � g iff

∑
ω∈Ω

μ(ω)E(u� f (ω))≥
∑
ω∈Ω

μ(ω)E(u�g(ω)) for every u ∈ U �

In this case, we say that (μ� U) is a single-prior expected multi-utility representa-
tion for �.

This utility representation notion extends the so-called expected multi-utility
representation of preferences over lotteries—see Dubra, Maccheroni, and Ok
(2004)—to the context of preferences over uncertain acts in a straightforward
manner. It models an agent who is confident in assessing the likelihood of the
states of nature, but who is nevertheless unable to compare some lotteries with
assurance.

An axiomatization of this model requires finding a behavioral postulate that
would capture a dual form of C-completeness; such a postulate should allow
for incompleteness of tastes, but not of beliefs. To formulate the property we
will use for this purpose, we need the following notation.

NOTATION: For any act f in F and any probability distribution α in Δ(Ω),
we write f α to denote the constant act that yields the lottery

∑
ω∈Ω α(ω)f (ω)

at every state, that is,

f α :=
(∑

ω∈Ω
α(ω)f (ω)

)
1Ω�

Now we can introduce the following axiom.

THE REDUCTION AXIOM: For any act f ∈ F , there is an αf ∈ Δ(Ω) such that
f αf ∼ f .

This axiom posits that the agent can always reduce subjective uncertainty to
objective uncertainty by suitably mixing the outcomes of a given act. From this
point of view, we can view the Reduction Axiom as the “local” formulation of
the notion of probabilistic sophistication introduced by Machina and Schmei-
dler (1992). While probabilistic sophistication of a preference relation � on F
demands that there is an α ∈ Δ(Ω) such that f α ∼ f for every act f in F , the
Reduction Axiom allows for the nature of the mixing α to vary across the acts
in F .

We may now characterize the aforementioned “dual” of the Knightian un-
certainty model:

THEOREM 1: A preference relation � on F satisfies the Independence, Con-
tinuity, and Reduction Axioms if, and only if, � admits a single-prior expected
multi-utility representation.
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REMARK—Uniqueness of Single-Prior Expected Multi-Utility Representa-
tion: There is a sense in which a single-prior expected multi-utility (μ� U) for
a preference relation on F is unique. This is characterized in Appendix A.2.

4. CONNECTING THE TWO MODELS OF INCOMPLETE PREFERENCES

4.1. A Unification Theorem

The notions of multi-prior expected single-utility representation and single-
prior expected multi-utility representation correspond to two complementary
sources of incompleteness in the context of the Anscombe–Aumann frame-
work. This is formalized by the two axioms that help characterize these mod-
els, namely, the axioms of C-completeness and reduction. However, ostensibly,
these two properties posit rather different sorts of behavioral restrictions on a
preference relation. In particular, it is not clear in which sense one can think of
these properties as special cases of a more basic notion of “partial complete-
ness.”

This question amounts to identifying the nature of “completeness” shared
by both the Knightian uncertainty model and its dual. One possible answer to
it stems from the fact that, in the context of either of these models, for every
act f there is at least one way of reducing subjective uncertainty to risk (by
mixing the outcomes associated with f ) so that the resulting constant act is
comparable, in fact, preferred, to f . This suggests the following axiom.

THE WEAK REDUCTION AXIOM: For any act f ∈ F , there is an αf ∈ Δ(Ω)
such that f αf � f .

The Weak Reduction Axiom is clearly a weakening of the Reduction Ax-
iom. At the same time, it is also implied by C-completeness and monotonic-
ity. (C-completeness implies that, for any act f , there is an ω∗ ∈ Ω such that
f (ω∗)1Ω � f (ω)1Ω for all ω ∈ Ω, and hence, by monotonicity, f α � f , where
α ∈ Δ(Ω) satisfies α(ω∗) = 1.) Consequently, the Weak Reduction Axiom is
satisfied both by the single-prior expected multi-utility model and by the multi-
prior expected single-utility model. The theorem below shows that, among the
preference relations that satisfy independence and continuity, these two mod-
els are actually the only ones compatible with this property.

THEOREM 2: A preference relation � on F satisfies the Independence, Conti-
nuity, and Weak Reduction Axioms if, and only if, � admits either

(i) a multi-prior expected single-utility representation or
(ii) a single-prior expected multi-utility representation.

This result shows that weak reduction, together with independence and con-
tinuity, implies that only one of the two “extreme” models above could repre-
sent the preferences. Put differently, for both types of indecisiveness to take
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place at the same time, there must be some act f such that there is no α in
Δ(Ω) with f α � f . This means that the two forms of indecisiveness can coexist
only at the expense of the agent’s ability to reduce subjective uncertainty to an
objective one and still be able to make comparisons.

REMARK—Weak Reduction as a Partial Completeness Axiom: Despite its
initial appearance, the power of the Weak Reduction Axiom does not stem
from its allowance for reducing subjective uncertainty to risk in a “favorable”
manner. Indeed, in Theorem 2, this property can be replaced by the alternative
requirement that, for each f , there is an αf in Δ(Ω) such that f � f αf ; or
that, for each act f , there are αf and αf in Δ(Ω) such that f αf � f � f αf .
(After all, Theorem 2 implies that either of these properties is equivalent to the
Weak Reduction Axiom in the presence of independence and continuity.) It
thus seems more appropriate to view this axiom as a postulate that restricts the
extent of incompleteness of �, and not one that imposes an intrinsic preference
for risk over uncertainty.4

4.2. Bewley’s Expected Utility Theorem, Reconsidered

Theorem 2 provides a new route toward deriving the two models of incom-
plete preferences we considered above. In particular, Bewley’s theorem is an
immediate consequence of this result. To see this, we first note that Theorem 2
entails an alternative characterization of the multi-prior expected single-utility
model in which monotonicity is replaced by the Weak Reduction Axiom:

PROPOSITION 1: A preference relation � on F satisfies the Independence, Con-
tinuity, Weak Reduction, and C-Completeness Axioms if, and only if, it admits a
multi-prior expected single-utility representation.

It is not difficult to show that a preference relation on F that admits a single-
prior expected multi-utility representation satisfies C-completeness iff it is
complete. Thus, Proposition 1 is an immediate consequence of Theorem 2 and
the Anscombe–Aumann theorem. In turn, as noted earlier, C-completeness
and monotonicity jointly imply the Weak Reduction Axiom, so Bewley’s theo-
rem obtains as an immediate corollary of Proposition 1.

4.3. Proving Theorem 1

Theorem 1 is also an immediate consequence of Theorem 2. Indeed, it is
plain that a preference relation � on F satisfies reduction and C-completeness

4In this respect, it seems more reasonable to consider a weaker completeness requirement:
For any act f ∈ F , there is an αf ∈ Δ(Ω) such that f αf and f are deemed comparable by �.
At present, we do not know if this property is equivalent to the Weak Reduction Axiom in the
presence of independence and continuity.
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iff it is complete. Therefore, by Theorem 2, � satisfies reduction, indepen-
dence, and continuity iff either it is complete or it admits a single-prior ex-
pected multi-utility representation. By the Anscombe–Aumann theorem, the
former case is a special case of the latter, so Theorem 1 is proved.

4.4. “Reduction”-Style Axioms and Other Properties

As the Reduction Axiom can be thought of as a particular completeness
property, the structure of the axiomatizations given in Bewley’s theorem and
in Theorem 1 can be viewed as independence, continuity, and monotonicity
plus a completeness property. Dually, we can think of the structure of these ax-
iom systems as independence and continuity plus a reduction property. In other
words, just like reduction is a completeness property, there is a sense in which
C-completeness is a reduction property (that tells us how certain nonconstant
acts relate to certain constant acts). To see this, consider the following axiom.

THE WEAK SURE-REDUCTION AXIOM: For any act f ∈ F , there is an ω ∈ Ω
such that f (ω)1Ω � f .

For any preference relation � on F , we say that a state in Ω is �-sure if,
for every two acts f and g in F , we have f ∼ g whenever f (ω) = g(ω). We
next show that in the nontrivial case where there are no �-sure states in Ω,
and in the presence of the other axioms of Bewley’s theorem, C-completeness
coincides with the Weak Sure-Reduction Axiom.

PROPOSITION 2: Let � be a preference relation on F that satisfies the inde-
pendence and continuity axioms, and assume that no state in Ω is �-sure. Then,
� satisfies C-completeness and monotonicity if, and only if, it satisfies the Weak
Sure-Reduction Axiom.5

It is possible to deduce this fact as another consequence of Theorem 2. We
have already seen in Section 4.1 that C-completeness and monotonicity im-
ply the Weak Sure-Reduction Axiom. Conversely, let � be a preference rela-
tion that satisfies the independence and continuity as well as the Weak Sure-
Reduction Axiom. Then, by Theorem 2, � admits either a multi-prior expected
single-utility or a single-prior expected multi-utility representation. In the for-
mer case, we are done, so assume the latter case, and let (μ� U) be a single-
prior expected multi-utility for �. Notice that monotonicity must hold. Now
take any two lotteries p and q in Δ(X), fix a state ω ∈ Ω with μ(ω) > 0, and

5 As it was the case with the Weak Reduction Axiom, this property should be viewed as one
that allows reducing subjective uncertainty to risk in a “comparable” manner, not necessarily
in a “favorable” manner. For instance, in Proposition 2, this property can be replaced by the
alternative requirement that, for each f , there is an ω in Ω such that f � f (ω)1Ω.
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consider the act f := p1{ω} + q1Ω\{ω}. By weak sure-reduction, we have either
p1Ω � f or q1Ω � f . But μ(ω) < 1, because ω is not �-sure. Then, using the
representation of � via (μ� U), one may readily check that the former state-
ment holds iff p1Ω � q1Ω, and the latter holds iff q1Ω � p1Ω. Thus, � satisfies
C-completeness, as we sought.

The models of multi-prior expected single-utility and single-prior expected
multi-utility correspond to dual notions of representation. Combining Propo-
sition 2 with Bewley’s theorem, and comparing with Theorem 1, provides a
“dual” outlook for the respective axiomatizations of these models as well.
Adding weak sure-reduction to independence and continuity yields the for-
mer model (indecisiveness in beliefs), while adding reduction to them instead
yields the latter (indecisiveness in tastes). These observations are summarized
in Figure 1, which contains a Venn diagram that depicts the logical relation
between the different axioms and representations, under the assumptions of
independence and continuity.

In passing, we should mention that Nau (2006) and Galaabaatar and Karni
(2012) have axiomatized, under the restriction of a finite prize space, rep-
resentations that allow for indecisiveness in taste and beliefs simultaneously.
The main axiom in Nau (2006) is a stronger version of the standard separabil-
ity axiom, while the main property in Galaabaatar and Karni (2012) is, under
independence and continuity, a strengthening of monotonicity. It can be shown
that, under independence and continuity, weak reduction is stronger than both
of these properties. This means that, in some sense, weak reduction not only

FIGURE 1.—Relation between axioms and representations assuming independence, continu-
ity, and no �-sure state.
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implies the strengthenings of separability and monotonicity above, but it also
contains an additional form of partial completeness.6

5. A SKETCH OF THE PROOF FOR THEOREM 2

This section is devoted to proving Theorem 2. The “if” part of this result is
straightforward, so we concentrate here on its “only if” part alone. To this end,
let � be a preference relation on F that satisfies the Independence, Continuity,
and Weak Reduction Axioms.

We divide the main argument into three steps. The first step is a bit technical
and is treated in full only in Appendix A.1. The arguments in the subsequent
two steps are meant to be complete.7

Step 1. There exists a nonempty subset U of C(X ×Ω) such that, for any acts
f and g in F , we have f � g iff

∑
ω∈Ω

E(U(·�ω)� f (ω))≥
∑
ω∈Ω

E(U(·�ω)�g(ω)) for every U ∈ U �(2)

Theorem 0 in the Appendix shows that this statement is equivalent to the In-
dependence and Continuity Axioms alone.8

Step 2. There exists a nonempty subset H of Δ(Ω)× C(X) such that, for any
acts f and g in F , we have f � g iff

∑
ω∈Ω

μ(ω)E(u� f (ω))≥
∑
ω∈Ω

μ(ω)E(u�g(ω)) for every (μ�u) ∈ H�(3)

We refer to the representation in (3) as a multi-prior expected multi-utility repre-
sentation. In words, Step 2 says that, whenever � satisfies the Weak Reduction
Axiom, each of the state-dependent utility functions found in Step 1 can in
fact be made state-independent.9 This is an easy consequence of the following
observation:

6However, while the properties in Nau (2006) and Galaabaatar and Karni (2012) mentioned
above cannot be seen as partial completeness properties, both papers are not free of assumptions
of this kind. In particular, both impose the existence of a best and a worst option, which, especially
when coupled with independence, induces quite a bit of comparability on the part of the agent.

7Our earlier proof of this result was rather clumsy. One of the referees of this journal has
kindly suggested a simpler argument. It is this argument that we present in this section.

8In the context of a finite prize space, the same result was proved in Nau (2006). García del
Amo and Ríos Insua (2002) presented a related result, when X and Ω are compact subsets of a
Euclidean space.

9When � is complete, independence and continuity imply that it is represented by a single
state-dependent expected-utility function (cf. Kreps (1988)). In turn, the Anscombe–Aumann
theorem shows that monotonicity is enough to obtain state-independence in this case. This is no
longer true when � is not complete. That is, if we replaced weak reduction by monotonicity, we
would not obtain the representation in (3). See Seidenfeld, Schervish, and Kadane (1995) and
Nau (2006) for related counterexamples.
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CLAIM 1: For each U in U , there is a state ωU ∈ Ω such that every U(·�ω) is a
nonnegative affine transformation of U(·�ωU).

PROOF: If U(·�ω) is constant for each ω ∈ Ω, then the claim is trivially true.
Suppose, then, there is an ω1 ∈ Ω such that U(·�ω1) is not constant. We wish
to show that U(·�ω) is a nonnegative affine transformation of U(·�ω1) for
any ω ∈ Ω \ {ω1}. To derive a contradiction, suppose there is a state ω2 ∈ Ω,
distinct from ω1, such that U(·�ω2) is not a nonnegative affine transformation
of U(·�ω1). Then, these functions are the von Neumann–Morgenstern utilities
for two different and nontrivial risk preferences over Δ(X). It follows that there
exist two lotteries p and q such that

E(U(·�ω1)�p) > E(U(·�ω1)�q) and(4)

E(U(·�ω2)�p) < E(U(·�ω2)�q)�
10

We now consider the act f ∈ F defined as

f (ω) :=
{
p� if E(U(·�ω)�p)≥ E(U(·�ω)�q),
q� otherwise.

It follows readily from the structure of f and (4) that
∑
ω∈Ω

E(U(·�ω)� f (ω)) >
∑
ω∈Ω

E(U(·�ω)� f α(ω)) for every α ∈ Δ(Ω)�

Therefore, f α � f is false for every α ∈ Δ(Ω), contradicting the Weak Reduc-
tion Axiom. Q.E.D.

Step 2 is now completed by means of a standard normalization argument.
Take any U in U . By Claim 1, there are two maps αU :Ω→ R+ and βU :Ω→ R

such that αU(ωU)= 1, βU(ωU)= 0, and

U(·�ω)= αU(ω)U(·�ωU)+βU(ω) for each ω ∈ Ω�

Defining μU ∈ Δ(Ω) by μU(ω) := αU(ω)/
∑

τ∈Ω αU(τ), and using Step 1, we
find that H := {(μU�U(·�ωU)) :U ∈ U } is a multi-prior expected multi-utility
for �.

10More precisely, the fact that U(·�ω2) is not a nonnegative affine transformation of U(·�ω1)
entails that there exist two lotteries p′ and q′ such that

E(U(·�ω1)�p
′)≥ E(U(·�ω1)�q

′) and E(U(·�ω2)�p
′) < E(U(·�ω2)�q

′)�

As U(·�ω1) is not constant, it is clear that either E(U(·�ω1)�P) > E(U(·�ω1)�q
′) for some lottery

P on X or E(U(·�ω1)�p
′) > E(U(·�ω1)�Q) for some lottery Q on X . Defining p to be (1−λ)p′ +

λP for small enough λ > 0 and setting q = q′ in the first case, and defining q to be (1 −λ)q′ +λQ
for small enough λ > 0 and setting p = p′ in the second, we obtain (4).
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Step 3. � admits either a multi-prior expected single-utility representation
or a single-prior expected multi-utility representation.

To see this, assume that � admits neither a multi-prior expected single-utility
nor a single-prior expected multi-utility representation. Then, there exist two
pairs (μ�u) and (σ�v) in the collection H we found in Step 2 such that μ �= σ ,
u and v are not constant, and v is not a positive affine transformation of u.
Then, there exist an event A ⊆Ω such that μ(A) > σ(A), and lotteries p�q ∈
Δ(X) such that E(u�p) ≥ E(u�q) and E(v�p) < E(v�q). Furthermore, as in
the proof of Claim 1, it is without loss of generality to posit that E(u�p) >
E(u�q) here.

The key observation is that, for the act f := p1A + q1Ω\A and any α ∈ Δ(Ω),
we have

∑
ω∈Ω

μ(ω)E(u� f (ω))≤
∑
ω∈Ω

μ(ω)E(u� f α(ω)) iff μ(A) ≤ α(A)�(5)

whereas
∑
ω∈Ω

σ(ω)E(v� f (ω)) ≤
∑
ω∈Ω

σ(ω)E(v� f α(ω)) iff σ(A)≥ α(A)�(6)

But, by the Weak Reduction Axiom, there is an α ∈ Δ(Ω) such that f α � f .
Thus, in view of the representation of �, (5) and (6) yield σ(A)≥ μ(A), a con-
tradiction. Our proof of Theorem 2 is now complete.

APPENDIX

A.1. On Step 1 of the Proof of Theorem 2

The argument we gave in Step 1 of the proof of Theorem 2 above is based
on the following additive representation theorem.

THEOREM 0: A preference relation � on F satisfies the Independence and
Continuity Axioms if, and only if, there exists a nonempty convex subset U of
C(X ×Ω) such that f � g iff

∑
ω∈Ω

E(U(·�ω)� f (ω))≥
∑
ω∈Ω

E(U(·�ω)�g(ω)) for every U ∈ U

for any acts f and g in F .

The “if” part of this assertion is straightforward, so we focus on its “only if”
part alone. The argument for this part is a modification of the one given by
Dubra, Maccheroni, and Ok (2004) for their expected multi-utility theorem.
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Let � be a preference relation on F that satisfies the Independence and
Continuity Axioms. For any act h in F , define the Borel probability measure h
on X ×Ω by

h(S × {ω}) := 1
|Ω|h(ω)(S)�

for any ω ∈ Ω and Borel subset S of X . Let S := {h :h ∈ F }, which is a closed
and convex subset of Δ(X ×Ω). Next, we define the binary relation � on S as

f � g iff f � g�

It is easy to see that � is affine. Furthermore, � is a closed subset of Δ(X×Ω)2.
These properties of � allow us to borrow Lemma 2 of Dubra, Maccheroni, and
Ok (2004):

CLAIM A.1: The set

C(�) := {λ(r − s) :λ> 0 and r � s}
is a convex cone in the linear space spanned by S . Furthermore,

f � g iff f − g ∈C(�)

for any f and g in S .

Now let ca(X × Ω) denote the normed linear space of signed finite Borel
measures on X×Ω. While this space is normed by the total variation norm, it is
isometrically isomorphic to C(X×Ω)∗, because X×Ω is compact. We use this
duality to topologize ca(X×Ω) with the weak∗-topology. For concreteness, let
us denote the resulting topological space by ca(X ×Ω)∗. (The notation ca(X)∗
is similarly interpreted.) We note that, by definition, a net (μα) in ca(X ×Ω)∗
converges to a signed finite Borel measure μ on X ×Ω iff

∫
X×Ω

U dμα →
∫
X×Ω

U dμ for all U ∈ C(X ×Ω)�

We shall show next that the cone C(�) is closed in ca(X ×Ω)∗.

CLAIM A.2: C(�) is a closed subset of ca(X ×Ω)∗.

PROOF: The Krein–Smulian theorem says that every sequentially weak∗-
closed convex set in the dual of a separable normed linear space is weak∗-
closed. But, since X × Ω is compact, C(X × Ω) is separable, and ca(X × Ω)
is isometrically isomorphic to C(X × Ω)∗. It follows that it is enough to show
that C(�) is sequentially closed in ca(X ×Ω)∗ to establish Claim A.2.
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Take an arbitrary sequence (μm) in C(�). By definition, there exist a se-
quence (λm) of positive real numbers, and sequences (fm) and (gm) in S such
that

μm = λm(fm − gm) and fm � gm

for each positive integer m. Assume that (μm) converges in ca(X × Ω)∗.
Clearly, if fm = gm for infinitely many m, then (μm) has a subsequence that
converges to the origin of ca(X × Ω). As C(�) contains the origin, we are
done in this case. Let us assume then that fm is distinct from gm for all but
finitely many m. Without loss of generality, we assume that fm �= gm for each m.

Note that, by definition,
(∫

X×Ω

U dμ1�

∫
X×Ω

U dμ2� � � �

)

is a convergent real sequence for every U in C(X ×Ω). It follows that

sup
{∫

X×Ω

U dμ1�

∫
X×Ω

U dμ2� � � �

}
<∞ for every U ∈ C(X ×Ω)�

By the uniform boundedness principle, therefore, sup{‖μ1‖�‖μ2‖� � � �} < ∞,
that is, there exists a real number K such that

‖λm(fm − gm)‖ ≤K(7)

for every m, where ‖ · ‖ is the total variation norm. On the other hand, by the
Jordan decomposition theorem, for each positive integer m and state ω in Ω,
there exist two mutually singular Borel probability measures tm(ω) and sm(ω)
and a positive real number αm(ω) such that

fm(ω)− gm(ω)= αm(ω)(tm(ω)− sm(ω))�

Letting

αm := max{αm(ω) :ω ∈Ω}
and

rm(ω) := αm(ω)

αm

tm(ω)+
(

1 − αm(ω)

αm

)
sm(ω)�

we have

fm(ω)− gm(ω)= αm(r
m(ω)− sm(ω))
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for each m and ω. Furthermore, for at least one state ω in Ω, the probability
measures rm(ω) and sm(ω) are mutually singular. Therefore, we have

fm − gm = αm(rm − sm) and ‖rm − sm‖ ≥ 2
|Ω| �

and hence,

‖λm(fm − gm)‖ = ‖λmαm(rm − sm)‖
= λmαm‖rm − sm‖
≥ 2λmαm

|Ω|
for every m. Combining this observation with (7) shows that (λmαm) is a
bounded real sequence. Thus, there exists a strictly increasing sequence
(mk) of positive integers such that (λmk

αmk
) converges. Since X is compact,

Prokhorov’s theorem entails that Δ(X) is a compact subset of ca(X) rela-
tive to the topology of weak convergence, and hence, for every state ω, both
rmk(ω) and smk(ω) must have convergent subsequences in ca(X)∗. Passing to
these subsequences consecutively, we find a strictly increasing sequence (nk) of
positive integers such that, for each state ω, (λnkαnk), (r

nk(ω)), and (snk(ω))
converge, the latter two in ca(X)∗, to λ, r(ω), and s(ω), respectively. Obvi-
ously, λ ≥ 0 and r and s are Borel probability measures on X ×Ω. Moreover,
for any U ∈ C(X ×Ω), we have

∫
X×Ω

U drnk =
∑
ω∈Ω

∫
X×{ω}

U drnk

=
∑
ω∈Ω

1
|Ω|

∫
X

U(·�ω)drnk(ω)

→
∑
ω∈Ω

1
|Ω|

∫
X

U(·�ω)dr(ω)

=
∫
X×Ω

U dr�

and hence rnk → r in ca(X ×Ω)∗� and similarly, snk → s in ca(X ×Ω)∗. Con-
sequently,

μmk
= λnk(f

nk − gnk)= λnkαnk(r
nk − snk)→ λ(r − s)

as k → ∞. But since fnk � gnk and rnk − snk = 1
αm
(fnk − gnk), Claim A.1 implies

that rnk � snk for each k. As � is a closed subset of Δ(X × Ω)2, therefore, we
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have r � s� Thus λ(r − s) ∈ C(�), that is, (μnk) converges to a point in C(�)
relative to ca(X×Ω)∗. Since every subsequence of a convergent sequence con-
verges to the limit of the mother sequence, we are done. Q.E.D.

Given that C(�) is a closed convex cone in the locally convex topological lin-
ear space ca(X×Ω)∗, we may apply the separating hyperplane theorem to con-
clude that C(�) equals the intersection of all closed halfspaces in ca(X ×Ω)∗
that contains C(�) and that goes through the origin. Consequently, there exist
a set L of continuous linear functionals on ca(X ×Ω)∗ and a real map σ on L
such that, for any f and g in S , we have

f � g iff L(f − g)≥ 0 for every L ∈ L�

that is,

f � g iff L(f) ≥L(g) for every L ∈ L�(8)

Now, fix an L in L arbitrarily, and define the binary relation �L on F as

f �L g iff L(f)≥L(g)�(9)

It is easy to see that the linearity and continuity of L ensure that �L satisfies
the Independence and Continuity Axioms. Since �L is complete, therefore, we
may apply the classical state-dependent expected utility theorem to conclude
that there exists a map UL ∈ C(X ×Ω) such that, for every f and g in F ,

f �L g iff
∑
ω∈Ω

∫
X

UL(·�ω)df (ω)≥
∑
ω∈Ω

∫
X

UL(·�ω)dg(ω)�

Combining this representation with (8) and (9), invoking Claim A.1, and letting
U be the convex hull of {UL :L ∈ L}, completes our proof.

A.2. On the Uniqueness of the Single-Prior Expected Multi-Utility Representation

We provide here the uniqueness counterpart of the representation obtained
in Theorem 1. To state the associated result formally, we need a final bit of
notation.

NOTATION: For any nonempty subset U of C(X), by 〈U 〉 we mean the closed
and convex conical hull of U and the constant functions on X . That is, v ∈ 〈U 〉
iff either v can be written as a positive linear combination of finitely many maps
in U plus a constant, or it is equal to the (uniform) limit of a sequence of maps
in C(X), each of which can be written this way.

The uniqueness of the notion of single-prior expected multi-utility represen-
tation is formulated as follows:



INCOMPLETE PREFERENCES UNDER UNCERTAINTY 1807

THEOREM 3: Let � be a preference relation on F such that � �= F × F . If
(μ� U) and (ν� V) are two single-prior expected multi-utilities for �, then μ = ν
and 〈U 〉 = 〈V 〉.

The proof of this result is based on the following result, which is a conse-
quence of the separating hyperplane theorem. A more general version of this
result was proved by Dubra, Maccheroni, and Ok (2004), so we omit its proof
here.

LEMMA: Let X be a compact metric space. Two nonempty sets U and V in
C(X) satisfy, for each p and q in Δ(X),

∫
X

udp≥
∫
X

udq for all u ∈ U iff

∫
X

vdp≥
∫
X

vdq for all v ∈ V

if, and only if, 〈U 〉 = 〈V 〉.
Now let (μ� U) and (ν� V) be two single-prior expected multi-utility repre-

sentations for a preference relation �, and assume that � �= F × F . By the
lemma above, we readily have 〈U 〉 = 〈V 〉. Since � �= F × F , we can find two
lotteries p and q in Δ(X) and a map v in V such that E(v�p) > E(v�q). Now
take an arbitrary ω in Ω, and consider the acts

f := p1{ω} + q1Ω\{ω} and f μ := (
μ(ω)p+ (1 −μ(ω))q

)
1Ω�

Then, for any u in U , we have
∑
τ∈Ω

μ(τ)E(u� f (τ))=
∑
τ∈Ω

μ(τ)E(u� f μ(τ))�

whence f ∼ f μ. But this implies that
∑
τ∈Ω

ν(τ)E(v� f (τ))=
∑
τ∈Ω

ν(τ)E(v� f μ(τ))�

which can be true only if ν(ω) = μ(ω). Since ω was chosen arbitrarily in Ω, we
may conclude that μ= ν, thereby completing the proof of Theorem 3.
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