
Online Appendix

Detailed Calculations in Examples 3 and 5

As in the proof of Proposition 1, let ρ ≡ 1
ψ

. Recall that, in EZ, lotteries are evaluated

according to the recursion

Vt =
{

(1− β)C1−ρ
t + β

[
Et
(
V 1−α
t+1

)] 1−ρ
1−α
} 1

1−ρ
.

It can be verified that the EZ value of the stream (x2, x3, x4, ...) is:

V2 =

{
(1− β) ·

[
x1−ρ2 +

∞∑
t=3

βt−2x1−ρt

]} 1
1−ρ

.

In our domain, all uncertainty is resolved in period 1 and all streams have the same

period-1 consumption (x1 = c). So, the EZ utility of the lottery with random pay-

ments {x̃t} in periods t ≥ 2 is:

V1 =

(1− β) c1−ρ + β

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ


1−ρ
1−α


1
1−ρ

. (27)

It is convenient to split in two cases depending on whether ρ < 1 or ρ > 1.

Case 1: ρ < 1

Since x
1

1−ρ is a strictly increasing function of x for ρ < 1, it follows that preferences

can be represented by

Ṽ1 = (1− β) c1−ρ + β

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ


1−ρ
1−α

.

Since all lotteries have the same period-1 consumption c and β > 0, they are also

represented by

˜̃V1 =

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ


1−ρ
1−α

. (28)

There are two subcases.
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Case 1a: α, ρ < 1.

If α < 1, so that 1−ρ
1−α > 0, we can raise the expression above by 1−α

1−ρ > 0 (which is a

monotone transformation) to obtain the following equivalent representation for EZ:

V̂1 = E1


[

(1− β) ·
∞∑
t=2

βt−2x1−ρt

] 1−α
1−ρ
 .

Dividing this expression by (1− ρ)
1−α
1−ρ > 0, we obtain

ˆ̂
V1 = E1


[

(1− β) ·
∞∑
t=2

βt−2 · x
1−ρ
t

1− ρ

] 1−α
1−ρ
 ,

which is a KM representation with φ(z) = z
1−α
1−ρ and u(x) = x1−ρ

1−ρ . Note that φ is

indeed increasing and its coefficient of absolute risk aversion of φ is −φ′′(z)
φ′(z)

= 1
z
· α−ρ
1−ρ .

Case 1b: ρ < 1 < α.

Next, suppose α > 1 > ρ. Applying the increasing transformation g(z) ≡ −

(
z
1−α
1−ρ

)
(1−ρ)

1−α
1−ρ

to (28), we find that preferences can be represented by:

V̂ = E1

−
[

(1− β) ·
∞∑
t=2

βt−2
x1−ρt

1− ρ

] 1−α
1−ρ
 ,

giving a KM representation with φ(z) = −
(
z

1−α
1−ρ

)
and u(x) = x1−ρ

1−ρ . Note that φ is

increasing (since 1−α
1−ρ < 0) and its coefficient of absolute risk aversion is −φ′′(z)

φ′(z)
=

1
z
· α−ρ
1−ρ .

Case 2: ρ > 1

We now consider the case of ρ > 1. Since f(x) = x
1

1−ρ is a decreasing function when

ρ > 1, it follows from (27) that preferences can be represented by

Ṽ1 = − (1− β) c1−ρ − β

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ


1−ρ
1−α

.
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As before, since the first term, − (1− β) c1−ρ, is the same in all lotteries in our domain

(the first-period consumption c is constant) and since β > 0 is a constant, preferences

in this case can be represented by

−

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ


1−ρ
1−α

. (29)

There are two subcases: α, ρ > 1 and ρ > 1 > α.

Case 2a: α, ρ > 1

Suppose first α, ρ > 1, so that 1−ρ
1−α > 0. Applying the increasing transformation

f(x) = x
1−α
1−ρ , we find that preferences can also be represented by

−

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ
 .

Dividing by the constant (ρ− 1)
1−α
1−ρ > 0, establishes that preferences can be repre-

sented by

E1

−
[
− (1− β) ·

∞∑
t=2

βt−2
x1−ρt

1− ρ

] 1−α
1−ρ
 ,

which is a KM representation with φ(z) = − (−z)
1−α
1−ρ and u(x) = x1−ρ

1−ρ . Note that φ

is increasing (since 1−ρ
1−α > 0) and the coefficient of absolute risk aversion is −φ′′(z)

φ′(z)
=

1
z
· α−ρ
1−ρ .

Case 2b: ρ > 1 > α

Since 1−ρ
1−α < 0, it follows from (29) that preferences can be represented by

E1

{(1− β) ·
∞∑
t=2

βt−2x1−ρt

} 1−α
1−ρ
 .

Dividing this expression by (ρ− 1)
1−α
1−ρ > 0, we obtain

E1


[
− (1− β) ·

∞∑
t=2

βt−2
x1−ρt

1− ρ

] 1−α
1−ρ
 ,

which is a KM representation with φ(z) = (−z)
1−α
1−ρ and u(x) = x1−ρ

1−ρ . Again, the

coefficient of absolute risk aversion is −φ′′(z)
φ′(z)

= 1
z
· α−ρ
1−ρ .
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SI conditions for EZ using the KM representation

From Proposition 3, a sufficient condition for SI is that φ is more convex than φ(z) =

log(z−u) and more concave than φ̄(z) ≡ − log (ū− z). As calculated previously, the

coefficients of relative risk aversion of φ equals −φ′′(z)
φ′(z)

= 1
z
· α−ρ
1−ρ , whereas:

− φ̄
′′(z)

φ̄′(z)
= − 1

ū− z
and −

φ′′(z)

φ′(z)
=

1

z − u
.

Therefore, the sufficient condition for SI from from Proposition 3 is

− 1

ū− z
≤ 1

z
· α− ρ

1− ρ
≤ 1

z − u
(30)

for all z ∈ u(R+), where ū ≡ sup{u(c) : c ∈ R+} and u ≡ inf{u(c) : c ∈ R+}.
Note that when ρ < 1, we have u(R+) = [0,+∞), so that ū = +∞ and u = 0.

Then, condition (30) becomes

0 ≤ α− ρ
1− ρ

≤ 1 ⇐⇒ ρ ≤ α ≤ 1.

When, instead, ρ > 1, we have u(R+) = (−∞, 0], so that ū = 0 and u = −∞. Then,

condition (30) becomes

0 ≤ α− ρ
1− ρ

≤ 1 ⇐⇒ ρ ≥ α ≥ 1.

Noting that since in EZ α 6= 1, these are the same as the necessary and sufficient

conditions from Proposition 1.

Detailed Calculations in Examples 4 and 6

Recall that the Risk Sensitive preferences of Hansen and Sargent (HS) admit the

following recursive representation:

Vt = u(xt)−
β

k
log
[
Et
(
e−kVt+1

)]
.

In our setting, all lotteries have the same consumption in period 0 and all uncertainty

is resolved in period 1. Since consumption is deterministic after the realization of

uncertainty at the start of period 1, we have:

Vt = u(xt) + βVt+1
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for all t ≥ 1. It can be verified that the following expression solves this equation:

V1 =
∞∑
t=1

βt−1u(xt).

Taking expectations in period 0 (before uncertainty is resolved), we obtain the fol-

lowing expression:

V0 = u(x0)−
β

k
log
[
E0

(
e−k

∑∞
t=1 β

t−1u(xt)
)]
.

Since all lotteries have the same consumption in period 0 in the domain we con-

sider, we can omit the period-0 consumption. Moreover, since β
κ
> 0 is a constant

and the logarithm function is strictly increasing, HS preferences over lotteries in our

domain can be also represented by:

Ṽ0 = E0

(
−e−k

∑∞
t=1 β

t−1u(xt)
)

= E0

(
−e−κ(1−β)

∑∞
t=1 β

t−1u(xt)
)
,

where κ ≡ k
1−β . This coincides with the KM representation for φ(z) ≡ − exp

(
− kz

1−β

)
.

SI conditions for HS using the KM representation

The coefficient of absolute risk aversion of φ equals:

−φ
′′(z)

φ′(z)
=

k

1− β
.

Since −φ′′(z)
φ′(z)

> 0, the sufficient conditions from Proposition 3 hold if and only if φ is

less concave than φ. Recall that the coefficient of absolute risk aversion of φ equals:

−
φ′′(x)

φ′(x)
=

1

x− u
.

Therefore, the sufficient conditions from Proposition 3 hold if and only if:

k

1− β
≤ 1

x− u
∀x ∈ u(X) ⇐⇒ ū− u ≤ 1− β

k
, (31)

where ū ≡ sup{u(x)}x∈C and u ≡ inf{u(x)}x∈C .

Contrast (31) with the necessary and sufficient condition from Proposition 2:

ū− u ≤ − log(β)

β

1

k
. (32)
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We claim that the sufficient condition from Proposition 3 is strictly weaker than the

necessary and sufficient condition from Proposition 2, so there exist preferences that

satisfy SI but do not satisfy the sufficient condition from Proposition 3. To establish

this, we need to show that the bound in (32) is higher than the bound in (31):

− log(β)

β

1

k
>

1− β
k

⇐⇒ β2 − β − log(β) > 0.

We claim that this inequality holds for all β ∈ [0, 1). To see this first note that at

β = 1, the LHS equals 0 so both bounds coincide. Moreover the derivative is negative

for all β ∈ [0, 1):

2β − 1− 1

β
< 0 ⇐⇒ β2 − β

2
− 1

2
< 0,

which is true since the expression on the LHS is an upward facing parabola with roots

−1
2

and +1.

Proof of Proposition 1 (detailed calculations)

Recall that with EZ, lotteries are evaluated according to

Vt = {(1− β)x1−ρt + β[Et(V 1−α
t+1 )]

1−ρ
1−α}

1
1−ρ . (33)

Substitution verifies that the value of a constant stream that pays c is c:

V0 = {(1− β)c1−ρ + βc1−ρ}
1

1−ρ = c.

Next, consider a stream that pays (
1︷︸︸︷
x , x, ...,

t︷︸︸︷
x︸ ︷︷ ︸

t

,

t+1︷︸︸︷
c , c, c, ...). By the previous

expression, the continuation value at t + 1 is c. Using the expression in (33), we

obtain:

Vt = {(1− β)x1−ρ + βc1−ρ}
1

1−ρ .

Substituting this expression for Vt−1, gives:

Vt−1 = {(1− β)x1−ρ + βV 1−ρ
t }

1
1−ρ = {(1− β)(1 + β)x1−ρ + β2c1−ρ}

1
1−ρ .

Substituting recursively s times, gives the following expression:

Vt−s = {(1− β)x1−ρ(1 + β + β2 + ...+ βs) + βs+1c1−ρ}
1

1−ρ .
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In particular, taking s = t− 1, gives value of the stream:

V1 = {(1−β)x1−ρ(1+β+β2+...+βt−1)+βtc1−ρ}
1

1−ρ = {(1−βt)x1−ρ+βtc1−ρ}
1

1−ρ . (34)

Next, consider the stream (
1︷︸︸︷
c , ...,

τ−1︷︸︸︷
c ,

τ︷︸︸︷
x , x, ...,

τ+t−1︷︸︸︷
x︸ ︷︷ ︸

t

, c, c, ...). Note that the

stream starting at τ is the same as the one evaluated in the previous parargaph.

Therefore, by the previous calculations, we have

Vτ = {(1− βt)x1−ρ + βtc1−ρ}
1

1−ρ .

Using the expression in (33), we obtain the value in period τ − 1:

Vτ−1 = [(1− β)c1−ρ + βV 1−ρ
τ ]

1
1−ρ = [c1−ρ + β(1− βt)(x1−ρ − c1−ρ)]

1
1−ρ .

Substituting recursively s times, gives

Vτ−s = {c1−ρ + βs(1− βt)(x1−ρ − c1−ρ)}
1

1−ρ .

Taking s = τ − 1 gives

V1 = {c1−ρ + βτ−1(1− βt)(x1−ρ − c1−ρ)}
1

1−ρ . (35)

Let c0 be an arbitrary but fixed consumption in period 0. We are interested in

the lottery that pays either

(
0︷︸︸︷
c0 ,

1︷︸︸︷
x , x, ...,

t︷︸︸︷
x︸ ︷︷ ︸

t

,

t+1︷︸︸︷
c , c, c, ...)

or

(
0︷︸︸︷
c0 ,

1︷︸︸︷
c , ...,

τ−1︷︸︸︷
c ,

τ︷︸︸︷
y , y, ...,

τ+t−1︷︸︸︷
y︸ ︷︷ ︸

t

, c, c, ...)

with 50-50 chance each. From the recursion in (33), the value of this lottery is:

V0 =
{

(1− β)c1−ρ0 + β[E0(V
1−α
1 )]

1−ρ
1−α

} 1
1−ρ

.

Using expressions in (34) and (35), we obtain

E0(V
1−α
1 ) =

{(1− βt)x1−ρ + βtc1−ρ}
1−α
1−ρ + {c1−ρ + βτ−1(1− βt) (x1−ρ − c1−ρ)}

1−α
1−ρ

2
.
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Substituting in the expression for V0, gives

V0 =


(1− β)c1−ρ0 + β


{(1− βt)x1−ρ + βtc1−ρ}

1−α
1−ρ

+ {c1−ρ + βτ−1(1− βt) (y1−ρ − c1−ρ)}
1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

.

Using this formula, we can write the condition for Stochastic Impatience in EZ

as: 
(1− β)c1−ρ0 + β


{(1− βt)x1−ρ + βtc1−ρ}

1−α
1−ρ

+ {c1−ρ + βτ−1(1− βt) (y1−ρ − c1−ρ)}
1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

≥
(1− β)c1−ρ0 + β


{(1− βt)y1−ρ + βtc1−ρ}

1−α
1−ρ

+ {c1−ρ + βτ−1(1− βt) (x1−ρ − c1−ρ)}
1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

for all t ∈ N all τ ∈ {2, 3, ...} and all x, y, c ∈ R+ with x > y. Letting τ̃ ≡ τ − 1, we

can rewrite this condition as:
(1− β)c1−ρ0 + β


{(1− βt)x1−ρ + βtc1−ρ}

1−α
1−ρ

+
{
c1−ρ + β τ̃ (1− βt) (y1−ρ − c1−ρ)

} 1−α
1−ρ

2



1−ρ
1−α


1
1−ρ

≥
(1− β)c1−ρ0 + β


{(1− βt)y1−ρ + βtc1−ρ}

1−α
1−ρ

+
{
c1−ρ + β τ̃ (1− βt) (x1−ρ − c1−ρ)

} 1−α
1−ρ

2



1−ρ
1−α


1
1−ρ
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for all t, τ̃ ∈ N and all x, y, c ∈ R+ with x > y.

First, suppose ρ < 1. The condition becomes[
{(1− βt)x1−ρ + βtc1−ρ}

1−α
1−ρ +

{
c1−ρ + β τ̃ (1− βt)

(
y1−ρ − c1−ρ

)} 1−α
1−ρ
] 1−ρ

1−α

≥[
{(1− βt)y1−ρ + βtc1−ρ}

1−α
1−ρ +

{
c1−ρ + β τ̃ (1− βt)

(
x1−ρ − c1−ρ

)} 1−α
1−ρ
] 1−ρ

1−α
.

Next, suppose ρ > 1. The condition becomes[
{(1− βt)x1−ρ + βtc1−ρ}

1−α
1−ρ +

{
c1−ρ + β τ̃ (1− βt)

(
y1−ρ − c1−ρ

)} 1−α
1−ρ
] 1−ρ

1−α

≤[
{(1− βt)y1−ρ + βtc1−ρ}

1−α
1−ρ +

{
c1−ρ + β τ̃ (1− βt)

(
x1−ρ − c1−ρ

)} 1−α
1−ρ
] 1−ρ

1−α
.

Note that c0 does not enter this expressions, so the period-0 consumption does not

affect the conditions for Stochastic Impatience.

It is straightforward to see that (by homotheticity) we can take c = 1 without loss

of generality (express x ≡ λxc and y ≡ λyc for λx, λy ∈ (0,+∞), then note that c1−ρ

cancels out in all expressions). So the conditions become[
{(1− βt)x1−ρ + βt}

1−α
1−ρ +

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ
] 1−ρ

1−α

≥[
{(1− βt)y1−ρ + βt}

1−α
1−ρ +

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ
] 1−ρ

1−α

if ρ < 1, and[
{(1− βt)x1−ρ + βt}

1−α
1−ρ +

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ
] 1−ρ

1−α

≤[
{(1− βt)y1−ρ + βt}

1−α
1−ρ +

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ
] 1−ρ

1−α

if ρ > 1.

There are 4 cases.
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Case 1: α, ρ < 1.

Here, the condition becomes

{(1− βt)x1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ

≥

{(1− βt)y1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ

for all x > y and all t, τ̃ . This holds iff

d

dz

{
{(1− βt)z1−ρ + βt}

1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} 1−α
1−ρ
}
≥ 0

for all z ∈ R+.

Case 2: α, ρ > 1.

{(1− βt)x1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ

≤

{(1− βt)y1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ

for all x > y and all t, τ̃ . This holds iff

d

dz

{
{(1− βt)x1−ρ + βt}

1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ
}
≤ 0

for all z ∈ R+.

Case 3: α > 1 > ρ.

{(1− βt)x1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ

≤

{(1− βt)y1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ

for all x > y and all t, τ̃ . This holds iff

d

dz

{
{(1− βt)z1−ρ + βt}

1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} 1−α
1−ρ
}
≤ 0

for all z ∈ R+.
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Case 4: α < 1 < ρ.

{(1− βt)x1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
x1−ρ − 1

)} 1−α
1−ρ

≥

{(1− βt)y1−ρ + βt}
1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
y1−ρ − 1

)} 1−α
1−ρ

for all x > y and all t, τ̃ . This holds iff

d

dz

{
{(1− βt)z1−ρ + βt}

1−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} 1−α
1−ρ
}
≥ 0

for all z ∈ R+.

To combine all cases, let

Φ(z) ≡
{

(1− βt)z1−ρ + βt
} 1−α

1−ρ −
{

1 + β τ̃ (1− βt)
(
z1−ρ − 1

)} 1−α
1−ρ .

We have shown that Stochastic Impatience requires Φ′(z) ≥ 0 if either α, ρ < 1 or

α < 1 < ρ, and Φ′(z) ≤ 0 if either α, ρ > 1 or α > 1 > ρ. That is, Stochastic

Impatience holds if and only if:

• Φ′(z) ≥ 0 for all z if α < 1

• Φ′(z) ≤ 0 for all z if α > 1

But note that

Φ′(z) = (1− α) (1− βt)z−ρ
{
{(1− βt)z1−ρ + βt}

ρ−α
1−ρ

−
{

1 + β τ̃ (1− βt) (z1−ρ − 1)
} ρ−α

1−ρ β τ̃

}
.

Moreover, (1 − βt)z−ρ > 0 for all z ∈ R+. Combining the two cases for α, we find

that Stochastic Impatience holds if and only if:{
(1− βt)z1−ρ + βt

} ρ−α
1−ρ −

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} ρ−α
1−ρ β τ̃ ≥ 0.

We have therefore shown the following lemma:

Lemma 7. Stochastic Impatience holds if and only if{
(1− βt)z1−ρ + βt

} ρ−α
1−ρ ≥ β τ̃

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} ρ−α
1−ρ

for all t, τ̃ and all z ∈ R+.

Now we need to verify when this condition holds.
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Case 1: α > 1 > ρ.

Taking t→∞, Stochastic Impatience becomes

zρ−α ≥
{

1 + β τ̃
(
z1−ρ − 1

)} ρ−α
1−ρ β τ̃

Since ρ− α < 0, the condition becomes

z ≤
{

1 + β τ̃
(
z1−ρ − 1

)} 1
1−ρ β

τ̃
ρ−α

⇐⇒
[
1− β( 1−ρ

ρ−α+1)τ̃
]
≤ β

1−ρ
ρ−α τ̃

1− β τ̃

z1−ρ
.

Note that the RHS converges to zero as z ↗ +∞ and the LHS is bounded away from

zero since

1 > β( 1−ρ
ρ−α+1)τ̃ ⇐⇒ α− 1

α− ρ
> 0.

Therefore, Stochastic Impatience fails in this case.

Case 2: α > ρ > 1.

Here, we can rearrange the Stochastic Impatience condition as:{
(1− βt)z1−ρ + βt

} ρ−α
1−ρ ≥ β τ̃

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} ρ−α
1−ρ

for all t, τ̃ and all z ∈ R+. Take t→∞, so the condition becomes

zρ−α ≥ β τ̃
{

1 + β τ̃
(
z1−ρ − 1

)} ρ−α
1−ρ

⇐⇒ 1− β τ̃
1−ρ
ρ−α+τ ≥ β τ̃

1−ρ
ρ−α
(
1− β τ̃

)
zρ−1.

Taking z ↗ ∞, we find that the RHS converges to +∞, violating Stochastic Impa-

tience.

Case 3: 1 > α ≥ ρ.

Here, we can rearrange the Stochastic Impatience condition as:

(1− βt)z1−ρ + βt ≤ β τ̃
1−ρ
ρ−α
{

1 + β τ̃ (1− βt)
(
z1−ρ − 1

)}
for all t, τ̃ and all z ∈ R+. Rearrange this condition as:

[
1− β τ̃(

1−ρ
ρ−α+1)

]
z1−ρ ≤ β τ̃

1−ρ
ρ−α − βt

1− βt
− β τ̃(

1−ρ
ρ−α+1)

12



Note that

1− β τ̃(
1−ρ
ρ−α+1) < 0 ⇐⇒ 1− α

ρ− α
< 0,

which is true.

Note that β
τ̃
1−ρ
ρ−α−βt
1−βt is decreasing in t whenever β τ̃

1−ρ
ρ−α > 1, which is true since

1−ρ
ρ−α < 0. Thus, Stochastic Impatience holds if and only if the condition above holds

for t =∞. Take t→ +∞, so it becomes:[
1− β τ̃(

1−ρ
ρ−α+1)

]
z1−ρ ≤ β τ̃

1−ρ
ρ−α − β τ̃(

1−ρ
ρ−α+1).

This is true if and only if

βτ(
1−ρ
ρ−α+1) − βτ

1−ρ
ρ−α ≤ 0 ⇐⇒ β ≤ 1,

verifying that Stochastic Impatience holds.

Case 4: 1 < α ≤ ρ.

Recall the condition for Stochastic Impatience to hold:{
(1− βt)z1−ρ + βt

} ρ−α
1−ρ ≥ β τ̃

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} ρ−α
1−ρ

for all t, τ̃ and all z ∈ R+.

Since ρ−α
1−ρ < 0, we can rewrite this condition as

(1− βt)z1−ρ
(

1− β τ̃
1−ρ
ρ−α+τ̃

)
≤ β τ̃

1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ (1− βt)− βt.

Note that the LHS is negative since (1− βt)z1−ρ > 0 and

1− β τ̃
1−ρ
ρ−α+τ̃ < 0 ⇐⇒ 1− α

ρ− α
< 0,

which is true. Note also that the RHS is positive:

β τ̃
1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ (1− βt)− βt > 0

⇐⇒ β τ̃
1−ρ
ρ−α
(
1− β τ̃

)
> βt

(
1− β τ̃

1−ρ
ρ−α+τ̃

)
,

but

β τ̃
1−ρ
ρ−α
(
1− β τ̃

)
> 0 > βt

<0 by our previous calculations︷ ︸︸ ︷(
1− β τ̃

1−ρ
ρ−α+τ̃

)
.

This establishes that Stochastic Impatience holds.

13



Case 5: α < ρ < 1.

Recall the condition for Stochastic Impatience to hold:{
(1− βt)z1−ρ + βt

} ρ−α
1−ρ ≥ β τ̃

{
1 + β τ̃ (1− βt)

(
z1−ρ − 1

)} ρ−α
1−ρ

for all t, τ̃ and all z ∈ R+. Since ρ−α
1−ρ > 0, we can rewrite this condition as

(1− βt)
(

1− β τ̃
1−ρ
ρ−α+τ̃

)
z1−ρ ≥ β τ̃

1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ (1− βt)− βt.

Recall that

1− β τ̃
1−ρ
ρ−α+τ̃ > 0 ⇐⇒ 1− α

ρ− α
> 0,

which is true here. Therefore, the LHS is positive. Because ρ < 1, the condition holds

if and only if it holds as z ↘ 0. Since

lim
z↘0

(1− βt)z1−ρ
(

1− β τ̃
1−ρ
ρ−α+τ̃

)
= 0,

Stochastic Impatience holds if and only if

β τ̃
1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ (1− βt)− βt ≤ 0

for all t, τ̃ . Rearrange this inequality as

β τ̃
1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ ≤ βt

(
1− β τ̃

1−ρ
ρ−α+τ̃

)
︸ ︷︷ ︸

+

.

Since the RHS is decreasing in t, it holds for all t if and only if it holds as t↗ +∞.

Thus, Stochastic Impatience holds if and only if

β τ̃
1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ ≤ 0 ⇐⇒ τ̃

1− ρ
ρ− α

≥ τ̃
1− ρ
ρ− α

+ τ̃ ,

which is false. Therefore, Stochastic Impatience fails.

Case 6: α < 1 < ρ.

Since ρ−α
1−ρ < 0, the condition for Stochastic Impatience to hold becomes

(1− βt)z1−ρ + βt ≤ β τ̃
1−ρ
ρ−α + β τ̃

1−ρ
ρ−α+τ̃ (1− βt)

(
z1−ρ − 1

)
for all t, τ̃ and all z ∈ R+. Rearrange it as

(1− βt)
(

1− β τ̃
1−ρ
ρ−α+τ̃

)
z1−ρ ≤ β τ̃

1−ρ
ρ−α − β τ̃

1−ρ
ρ−α+τ̃ (1− βt)− βt.
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Recall that

1− β τ̃
1−ρ
ρ−α+τ̃ > 0 ⇐⇒ 1− α

ρ− α
> 0,

which is true here. Therefore, the LHS is positive and decreasing in z. It follows that

Stochastic Impatience holds if and only if the condition holds as z ↘ 0. Since

lim
z↘0

(1− βt)
(

1− β τ̃
1−ρ
ρ−α+τ̃

)
z1−ρ = +∞,

Stochastic Impatience fails in this case.

Combining all cases, Stochastic Impatience holds if and only if either 1 > α ≥ ρ

or 1 < α ≤ ρ.
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